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This study concerns thb rroblem of tracking a target when the origin of the
sensor measurements is uncertain. The full Bayesian solution to this type of prob-
lem gives rise to Gaussian mixture distributions, which are composed of an ever
increasing number of components. To implement such a tracking filter, this growth
of components must be controlled by approximating the mixture distribution.

Two algorithms have been developed for approximating Gaussian mixture dis-
tributions. These techniques attempt to minimize the number of mixture components
without modifying the 'structure' of the distribution beyond a specified limit.
Also the final approximation is itself a Gaussian mixture.

The performance of the algorithms has been assessed by simulation for the
problem of tracking a single target in the presence of uniformly distributed false
measurements. This assessment indicates the significant range of problem para-
meters where the new algorithms give a substantial performance improvement over the
well known Probabilistic Data Association Filter (which apprcximatzz the mi:z by
a single Gaussian component).

The tracking example is extended in the second part of this study to show how
the Bayesian approach may be applied to more complex uncertain tracking problems,
including that of fusing data from several independent sources. In particular a
computationally efficient filter is derived which improves the track estimate from
a primary sensor, by making sub-optimal use of measurements from an auxiliary
sensor. Finally, a general solution is derived for a tracking problem with multi-
ple measurement classes. This general solution is used to derive a filter for
tracking a target in the presence of intermittent interfering measurements, in
addition to uniformly distributed false measurements.
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1 INTRODUCTION

1.1 Background

A tracking filter is an algorithm for estimating the state

(such as position and velocity) of an object from measurements

of a sensor such as a radar. Following the usual convention, an

object being tracked will be called a target. A basic assumption

of most tracking filters, such as the a-a filter and other filters

derived from Kalman filter theory, is that only measurements from

the target of in~et=st are passed to the filter. However in

practice, sensors produce measurements as a result of random noise,

clutter, interference and other targets, in addition to those from the

required target. Usually it is not possible to distinguish with

certainty between the wanted and the unwanted measurements. Hence

there is a need for tracking filters which recognize that some of the

received measurements may not originate from the required target.

Measurement origin uncertainty is most commonly encountered in

the context of muliple target tracking, although in this study we shall

only be concerned with the single target case. A number of approaches

to the uncertain tracking problem, with the emphasis on multiple target

tracking, are reviewed in the recent books by Blackman and Bar-Shalom

2 3-5
and Fortmann , and the survey papers . There are essentially two

types of approach to estimation in the presence of uncertainty: the

decision-directed approach where decisions are taken and assumed to be

true, and Bayesian techniques which allow for the possibility that the

most likely option may be incorrect.

The simplest decision-directed technique is the 'nearest neighbour'

filter: the track is updated with the measurement which is in some sense



closest to the expected target position. This is likely to give a poor

result if several measurements occur in the vicinity of the expected

target position. In these circum~tances a branching or track splitting

filter offers an improvement: a separate branch is propagated for each

possible measurement. The growth of tracks is controlled by merging

similar branches or by deleting branches if the likelihood function

(or the support) of that branch falls below a certain threshold (see

Smith and Buechler 6). A more sophisticated approach is to choose the

most likely hypothesis from the set of feasible hypotheses on the

association of all measurements that have been received. This is a

batch processing task (see Morefield 7) which should provide an optimal

solution in the maximum likelihood sense. Sequential versions of this

method have also been derived. These are computationally convenient

8 9but sub-optimal (see Sittler , and Stein and Blackman9)

For this present study, the Bayesian approach has been adopted.

As already indicated, this approach avoids the need to make 'hard'

decisions among quite probable hypotheses. Also an obvious implementation

is via a recursive filter which is convenient for real time processing.

However the full Bayesian solution is impractical and some approximation

is essential; promising results have been obtained by a number of

10-26
authors . Approximation of the optimal solution is one of the

main subjects of this study.

An approximate Bayesian filter for the problem of tracking a

a single target in clutter was first formulated by Singer et - 10

For the same problem, a very efficient approximation technique

known as the Probabilistic Data Association Filter (PDAF) was

11proposed by Bar-Shalom and Tse Various e.tensions of the

12basic PDAF for special cases including target maneouvres , random
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measurement arrival times and dual sensors have been developed by

Bar-Shalom and co-workers. An extension of the PDAF to the multiple target

ca-e was reported by Bar-Shalom17 and Fortmann et al18,19 (also see Refs 20

to 22). An important paper by Reid23 presents a Bayesian multiple

target filter which does not use the PDAF approximation. The branching

algorithm of Smith and Buechler6 may be viewed as a much simplified

version of this filter. More recent work on Bayesian multiple target

26
tracking is reported by Mori et al

1.2 The Bayesian approach

In the Bayesian approach to tracking, one attempts to construct

the probability density function (pdf) of the target state x , based

on all available information including the set Z of received measure-

27
ments . The required conditional pdf of x may be written p(xlZ)

Since this pdf embodies all available statistical information, it may be

said to be the complete solution of the tracking problem. In principle,

an optimal estimate of x for any criterion may be obtained from

p(xJZ) . A measure of the accuracy of the estimate may also be derived

from p(x!Z) . Clearly it is most desirable to obtain this conditional

pdf whenever an estimate of the target state is required.

For many tracking problems an estimate is required every time

that a set of sensor measurements is received. In this case a recursive

filter is a convenient solution. Such a filter consists of essentially

two stages: prediction and update. For prediction it is assumed that

an equation describing the evolution of the target state is available.

This can be used to predict the pdf or state forwards from one measure-

ment time to the next. Since the target is usually subject to unknown

disturbances, prediction usually increases the covariance of the state

pdf. The update operation uses the latest set of measurements to
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modify the predicted pdf. This is conveniently achieved using Bayes

.ieorem which is the mechanism for updating a pdf or probability in the

light of extra information from new data.

For estimation problems where the origin of measurements is

known, Bayes theorem leads tc. the Kalman filter update relations 2 8 -32

provided that the problem is linear and all random elements are Gaussian

(see Appendix A). This is the optimal tracking filter for this standard

tracking problem, and in this case p(xjZ) is a Gaussian pdf. This is

not so if the measurement origin is uncertain. To construct the

required pdf in this case it is necessary to take account of all

possible measurement associations. For each of these possibilities

or hypotheses, there is a corresponding Gaussian pdf of target state.

Thus the overall pdf of target state is a Gaussian mixture pdf 3 3 ' 3 4 of

the form:

N

p(XiZ) = I Pi(x) (

where pi(x) is the Gaussian pdf corresponding to hypothesis i

N is the total number of feasible hypotheses at this time and 3. is1

the probability that hypothesis i is correct, such that:

N

. > 0 and Si I

i=l

When new measurements are received for the update of this pdf, the

number of feasible hypotheses from past measurements is compounded by

origin uncertainty in the latest set. Since the probability and the

pdf corresponding to each of these hypotheses have to be updated via

Bayes thenrem, it is clear that the computational requirements of the



full Bayesian solution increase rapidly as tracking proceeds. This is

the major difficulty of the Bayesian approach to the uncertain tracking

problem.

1.3 A practical sub-optimal filter

To implement a Bayesian filter it is essential to contain these

computational requirements within acceptable bounds by making

approximations. Any approximation which changes p(xýZ) renders the

filter suo-optimal, so the aim should be to achieve the necessary

reduction in computation with minimal performance penalty. At each

measurement time, it is usual practice to subject the received measure-

ments to a coarse acceptance test. This rejects any data that are very

unlikely to originate from the target, so that very improbable hypotheses

are not considered. However origin uncertainty amongst the accepted

measurements may still cause the number of mixture components of

equation (1.1) to grow rapidly. fhus further direct approximation of

the mixture distribution may be necessary. Unlike the acceptance test

this approximation may result in a significant modification of the

complete solution, and so the choice of approximation should be

carefully considered.

As already mentioned, the PDAF11 is a popular and economical scheme

for approximating the mixture. This method reduces the complete mixture

to a single Gaussian component after processing each set of sensor measure-

ments. However this may destroy valuable information, especially if

several significant well spaced components are present. To provide a

better approximation to the mixture, two new algorithms (the Clustering

Algorithm and the Joining Algorithm) have been derived which allow

more than one component to be retained. These mixture reduction

algorithms operate by merging similar components together, and the:



are based on the requirement that reduction should proceed with

minimal modification to the 'structure' of the distribution (see

Chapter 3).

1.4 The baseline problem and simulation studies

A baseline problem has been chosen for this study to provide a

specific example of the growth in the number of measurement association

hypotheses, and to show how the reduction algorithms may be applied to

control this. The problem is to track a single target from se-Isor data

which includes spurious as well as useful measurements. A set of sensor

measurements is produced at discrete time intervals. Each set is com-

posed of at most one iu~e measurement which originates from the target,

and a number of false measurements which are uniformly distributed over

the measurement space and are independent of the target. The true

measurement has a Gaussian distribution about the target position and

it cannot be distinguished from the false measurements. The target

moves according to a linear model driven by Gaussian noise. The

full Bayesian solution to this problem, which has been considered

10,11by several authors , is derived in Chapter 2. All of the

tracking examples considered in this study are variations of this

single target pro lem. The single target case suffices to investigate

the trade off between complexity and filter performance. Also the

techniques developed here could be adapted for the multiple target

problem.

For our purposes, the performance of the mixture reduction

algorithms depends on the performance of the tracking filters that

employ them. The primary measure of filter performance chosen for

this study is the average timt for which the filter maintains track

on a target, the average track lifetime. Since there is no tractable
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analytical means of evaluating this performance measure, Monte Carlo

simulations have been carried out for a particular example of the

baseline problem. In this example, which is also used by Bar-Shalom

15
and Birmiwal , the target moves in a plane, the target kinematics are

described by a second order model and sensor measurements consist of

Cartesian co-ordinate pairs. The 'difficulty' of this tracking

problem may be easily controlled by adjusting several problem

parameters. In Chapter 4, the performance of tracking filters using

the new reduction algorithms is examined in detail for a single set of

problem parameters. In particular the effect of varying the maximum

number of mixture components retained by the reduction algorithms is

investigated. For this and other simulations in this study, the PDAF

provides the performance reference against which other filters are com-

pared. The results of Chapter 4 indicate that the Clustering Algorithm

is more computationally efficient than the Joining Algorithm, and so

from Chapter 5 onwards the former reduction technique is employed.

In Chapter 5, the performance of a filter using the Clustering

Algorithm is compared with the PDAF over awide range of problem

parameters for the simulation example. The new filter should always

outperform the PDAF, since the Clustering Algorithm retains more inform-

ation. We have attempted to identify the approximate region of the

problem parameter space where the performance of the Clustering

Algorithm filter is significantly better than the PDAF, ie where it is

worth retaining more than one component.

A second 'sector scan' example of the baseline problem is considered

in Chapter 6. This example has been used to examine the effect of several

practical filtering difficulties. These include sensor measurements in

polar co-ordinates which are a non-linear function of the target state,

and target manoeuvres which are not correctly represented by the filter's

assumed target model.
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As well as providing a tool for evaluating a performance measure,

simulation is a useful aid to understanding the operation of a filter.

For this study the simulation programs have been designed so that

either multiple replications can be performed to generate performance

statistics, or single runs can be carried out to examine filter

operation in detail. F-r multiple runs, overall performance

measures are produced together with a summary of the results of

each individual replication, including its random number seeds.

Thus any replication may be rerun with the program in single

replication mode to produce detailed output files for a thorough

analysis of filter operation. All simulation programs were

written in Fortran 77, and use of the Cray iS computer at RAE

Farnborough enabled an extensive range of simulation experiments

to be performed.

1.5 Extensions of the baseline problem

The final part of this study is concerned with extensions of the

baseline problem. In Chapter 7 we consider the problem of fusing

information from a number of sources. For many sensors it is possible

to obtain information on the origin of a measurement by analysing the

signal from which it is derived. For example, the shape of the return

from a pulse radar or the fluctuation over several returns may indicate

whether the measurement originates from clutter or from a true target.

Clearly the filter should make use of this signature information, and

Nagarajan et aZ35 show how it may easily be included in the Bayesian

formulation to modify p(xIZ) . Also in many tracking systems, measure-

ments are available from several independent sensors. Data from each of

these sensors may be incorporated sequentially because they are independent.

In Section 7.4 we consider the particular data fusion problem of combining
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information from a primary sensor which produces range and bearing

position measurements with an independent auxiliary sensor. The

auxiliary sensor gives only bearing information but it does include

an imperfect classification of each of its measurements. A new filter

has been derived for this problem which uses the auxiliary measurements

in a sub-optimal but efficient way. The performance of the filter is

compared with the single sensor filter to show the value of sub-optimal

processing of the auxiliary measurements.

For Chapters 2 to 7 it is assumed that a measurement from a given

sensor is a sample from one of two distributions: true or false. In

Chapter 8 we extend this to allow for samples from more than two

distributions, ie more than two classes of measurement are allowed.

The general solution to this problem is derived. This general solution

is used to develop a practical filter for tracking a target in the

presence of intermittent interference, in addition to the usual false

measurements.
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2 THE BASELINE PROBLEM: TRACKING A SINGLE TARGET IN THE PRESENCE
OF RANDOM UNIFORMLY DISTRIBUTED FALSE MEASUREMENTS

2.1 Introduction

In this chapter a formal statement of the baseline problem is

given and the optimal Bayesian soluition of this problem is derived.

This problem, which is taken from Refs 10 and 11, provides a convenient

example which illustrates many of the difficulties of uncertain tracking,

and it is a suitable basis for extension to more complex problems.

A full account of the solution is presented here to facilitate

the description of extensions given in later chapters. The major result

is that the posterior pdf of target state at each time step is a

Gaussian mixture and that the number of components which comprise this

mixture increases with time. This is confirmed by induction. Assuming

that the prior pdf of the target state at time step k is a Gaussian

mixture, the posterior distribution, after updating with the measure-

ments received at this time step, is shown to be another Gaussian

mixture with an increased number of components (sections 2.3.1 and

2.3.2). Using the target model, this posterior pdf is projected

forwards to show that the prior pdf at the following time step k+1

is also a Gaussian mixture (section 2.3.3), so completing the proof.

The recurrence relations for updating and prediction are given, and

the solution is seen to be equivalent to a bank of parallel Kalman

fiiters whose number grows with time. The significance of an optimal

solution requiring propagation of an ever increasing number of

Gaussian components is discussed in section 2.4.
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2.2 Problem statement

The problem is to provide an estimate of the state x of a single

target at discrete time steps, based on all the available information.

The state vector x typically consists of target position and velocity,

but other attributes of the target may alsQ be included. It is assumed

that x evolves according to a linear recurrence relation of the form:

xk+1 = "xk + wk , (2.1)

where xk is the n-component state vector at time tk

4 is the n x n state transition matrix,

r is an n x r matrix

and Wk is an r-component vector of system driving noise which has

a Gaussian distribution with zero mean and covariance given by:

E[ Tw] =~i

Here Q is a positive definite r x r matrix and 6ik is the Kronecker

delta. Equation (2.1) describes the kinematics of the target and is

known as the target model. Initially, at time ti , the state vector

Sis assumed to have a Gaussian distribution with known mean x and

covariance M (a positive definite n x n matrix).

At every time step k , a single sensor scans a surveillance region

and passes a set Zk of mk measurements to the tracking filter:

Zk = {ikj: j = 1 ... m .

Each measurement z kj is a u-component vector. It is assumed that the

target is well inside the surveillance region of the sensor, but that

the (known) probability PD of detecting the target may be less than

DI
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unity. It is also assumed that at most one of the measurements may

originate from the target. If measurement zkj does originate from the

target, then it is related to the state vector by the linear relationship:

zkj = % ' k (2.2)

where H is the u x n measurement matrix

and Yk is a u-component vector of measurement noise which has a

Gaussian distribution with zero mean and covariance given by:

EYi Yk R6 ik

Here R is a positive definite u x u matrix and 6ik is the Kronecker

delta. A measurement which originates from the target is said to be

true, while all other measurements are false. A false measurement is

assumed to be independent of the state vector, to have a uniform

distribution over the surveillance region of the sensor and to be

independent of all other present and past measurements. False measurements

are assumed to occur at an average density of p per unit area.

Further it is assumed that before examining the values of the measure-

ments in the set Zk , there is no information on which, if any, of the

measurements are associated with the target.

The following information is available to the tracking filter:

(i) The distribution of the initial state vector including its

mean x and covariance M

(ii) The target model, equation (2.1), including 0 and r

(iii) The relationship between the state vector and the true

measurement, equation (2.2), including H
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(iv) Th, statistics of the false measurements, the true

measurement and the model driving noise, including ,

R and Q .

(v) The detection probability PD of the sensor.

(vi) The measurement sets Zk for all past and current time

steps.

The tracking filter does not know:

(i) The values of the state vector xk , or the noise vectors

vk and wk at any time step.

(ii) The identity of the true measurement.

Note that if the identity of the true measurement were known, the

problem would reduce to that of the standard Kalman filter (see

Appendix A).

2.3 The Bayesian solution

2.3.1 The prior distribution of the state vector at time tk

The prior pdf of the state vector at time tk is the pdf of xk

given all available information up to time tk but excluding the set

of measurements received at time tk This available prior information

at time tk is denoted !k , and this includes all measurements

received at the previous time steps:

ZI , Z 2 , -. , ZkI

Since any one or none of the measurements of Z. could be true, there
i

are exactly m. + 1 exclusive hypotheses concerning the truth or
1.
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falsehood of the members of Z. Thus the total number of possible

hypotheses under Rk is:
k

k-1

nk-1 = TT(mi + . (2.3)

i=1

Therefore, given nkl possible hypotheses, the pdf of the state vector

xk may be written:

n k-1

P(-Xkj ) = Z P(-xk Ik-1 i,'k)Pr{f'k-1 i 'k} (2.4)
1=1

Here - denotes one of the possible hypotheses on the measurements

available under -k- , p is the pdf of x assuming
k (xj*k i'epk) th d f-k

is correct and is given, and Pr{,rk 1 i i th

probability that •'k-1 i is correct given the information Pk " In

expression (2.4), the prior pdf of Ek is written as the weighted sum

over all possible hypotheses of the pdf of xk conditional on each

hypothesis. The weighting factors in the summation are the corresponding

prior probabilities of each hypothesis being true. Equation (2.4) is

intuitively reasonable and is sometimes known as the total probability

theorem.

Now suppose that the conditional pdfs in the RHS of equation (2.4)

are known to be Gaussian, ie

P(~V~.1i ' k) = ',(k ; ki ' Mki) , (2.5)

where Xki and Mki are known, and J(a; b, C) denotes a Gaussian pdf

evaluated at a with mean b and covariance C. Also suppose that

the probabilities of the hypotheses are known and are denoted:
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Pr -I iL'k = Sk(i (2.6)

In this case equation (2.4) is a fully specified Gaussian mixture pdf

where each Gaussian component corresponds to one of the possible

hypotheses. Note that the above suppositions are true for k = 1

in which case, from the problem statement,

p(~ OSg 'ý) L= 1 1)1

which is a degenerate Gaussian mixture with a single component.

2.3.2 The posterior pdf of the state vector

The set Zk of m.k measurements received at time tk is to be

used to update the prior pdf of _xk specified by equations (2.4) to

(2.6). The resulting posterior pdf is denoted:

P (X IZk ' k )

In the following working we shall omit 9k for ease of notation,

although the dependency should bp understood for all conditional

probabilities and pdfs. Thus the posterior pdf of xk will be

written:

P(x-klzk)

After updating with the latest set of measurements, the total number

of possible hypotheses is increased to:

This increase may be viewed as a branching process where each of the

k-I i prior hypotheses of equation (2.4) may be seen as a potential
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track and each of these tracks then splits into a further mk+ 1 tracks

resulting from the new set of measurements. Thus a posterior hypothesis

including the latest set of measurements Zk may be written as a joint

hypothesis:

ki = i' kj)

where Ik is independent of JP' and indicates that the jth

measurement of set Zk is true (or that they are all false if j = 0).

The complete set of posterior hypotheses is:

kij:~ ~ i- ,..,nk-1; j = 0 , ..

Hence the posterior of pdf of xk may be written in the form:

nk-1 mk

P(x-kl(Zk) = ~ -ll i z z'kZ)P . JZk . (27

i--1 j=0

First consider the posterior pdf of xk conditioned by

P(•Xk nkij ' Zk)

is the probability density resulting from updating p(x •k-1 i) on

the assumption that the jth measurement from Zk is true (for

j # 0). In this case zkj is the only useful measurement from Zk

and the other members of Z can be discarded since they contain no

relevant information. A true measurement zT has a Gaussian

distribution:

Hxk , R

and the prior density of xk under ;rki is also Gaussian, given by

equation (2.5). Hence the required posterior density is also Gaussian

-...-..-.- N --ow a unm niH i
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and is given by the standard Kalman filter (see Appendix A).

So for j # 0 :

P(-xk •'ij Zk) k; J4 -Xk; ^' P'L

'i ' Xkj kj

where - ki+ Kki(Ekj -ki)

Kki - ijhTR-1

(2.8)

= - - ~-I
Pkij Mki Mki ki HMki

and

S ki= HMkiHT + R

If j = 0 , none of the members of Zk are true and so the prior pdf

is not modified:

i i
_xki0 = _Xki

and (2.9)
p'

ki0 Mki ' I

Now turning to the second term in the summation of equation (2.7),

the posterior probability that kij is correct may be evaluated

using Bayes theorem:

ki= k P(Zk) , (2.10)

where p(Z k) is a normalizing constant given by:

'k- 1 mk

P(zk) = P(Zkl ~ij)Pr{1.;1 4PrK i
i=1 j=U
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The equation (2.10) indicates how the prior probability Pr{•kI ij

is modified by the observations at time t k The posterior probability

can be found by evaluating the three factors in the numerator of the

RHS of equation (2.10).

First consider p(Zk This may be written:

P (Zk j'-*'j) = JP(zk ' -knij)4Lk = Jp(zkl'k ip(k-'jL

.................................(2.11)

Since the elements of Zk are independent:

mk

P(Zk - =ij) = P(-Zk -1k' wkj)

Z=1

A measurement z k is false under kj if j # Z False measurements

are uniformly distributed over the surveillance region of the sensor,

and so the pdf of a false measurement is Vk , where Vk is the

volume of the surveillance region. If j = . , the measurement zkC

is true and so is a sample from the Gaussian distribution defined by

equation (2.2). The prior pdf of xk

which is the Gaussian pdf (2.5). Hence on substituting into

equation (2.11) we obtain, for j # 0

P (Zk Vk•ij =•'(i-kj ;'•k' i)"(- ; ' 'ki)dýk

E .lk+ l.( - , ,E,-.,k ' S k,) (2.I12)
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where Ski is defined in the relations (2.8) and the integral

is evaluated in Appendix A.2. Expression (2.12) is strictly correct

only for a surveillance region of infinite extent. However, the

truncation effect is negligible provided that, for each component of

Ekj the distance from H-- i to the boundary of the surveillance

region is large compared with the standard deviation of the component.

If j = 0 so all the measurements are false:

P(zk l-'kli0) = Vk . (2.13)

The second factor in the numerator of (2.10) is the prior

probability of T kj :

Pr{Pk. kj jj-1 d Pr{\'k.}

since the hypothesis on the current set of measurements is independent

of hypotheses on measurements from previous time steps. The only prior

information available is the probability PD of detecting the target

and the probability of the sensor receiving m false measurements. If

false measurements are uniformly distributed over the measurement space

with density c , then it can be shown that the probability of m false

measurements falling within the surveillance region of the sensor is

given by a Poisson distribution. If the volume of the surveillance

region is Vk , the probability of receiving m false measurements is

given by:

-o Vk

g(m) =e k(Vk)( m'. (2.14)

The hypothesis kO corresponds to the event of failing to detect the

target and receiving mk false measurements. The prior probability of

this occurrence is:
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PrVjT k = - .~~k (2.15)

Any of the hypotheses "Y , j # 0 , could correspone to the situation

of detecting the target and receiving mk - 1 false measurements.

A prijn'* , each of these hypotheses is equally probable, and since

there are mk of them (for j # ):

PrfTký P g(m.k - 1 /k(2.16)

The third factor in the numerator of (2.10) is given

directly by equation (2.6):

Pr {ý5k-1 i = Bk-1 i (2.17)

Substituting (2.12) to (2.17) into (2.10) we obtain:

k-i i-"Zkj ; Hý_-ki Ski) for j 0

Pr{' i. Zk
k-I ( I P D)P -for j # 0

PDE

PEfor j= 0
PD

........ (2.18)

where E P D) nk- 1  mk

P + DZ k-1 rZft'-*kZ ;-r kr)

r=1 k=0

is the normalizing denominator. This equation is of key iml.rtance

because it defines the weightings of the mixture distribution (2.7).

Note that the volume Vk of the surveillance region does not appear

in (2.18). Also note that if PD = 1 , knowledge of Lne

density , of false measurements does not contribute to the posterior

pdf.
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Thus the posterior pdf of x~k given by equation (2.7) is a fully

specified Gaussian mixture. Equation (2.7) can be rewritten as a

single sum by defining:

PkZ kij

xk z 'kij

P =k Pt..

and

BkZ = Pr{)-ijNZk

where Z = (i- 1)(mk + I) + j + 1 , for i = 1 ,.. , and

j = 0 , ,mk .Thus:

nk

P(x-k!Zk) Z p(xkj rk Zk)P{LIk} , (.9
Z=I

k

where nk nkn-(mk ) T1(mi + I)

i=I1

P ~'ký-Z ' Zk) =*(ý ; kZ ' PkZ)

and Pr 4kk•" Zk = 'k '

The Gaussian mixture (2..19) contains all the available

information on the state vector xk after taking account of the latest

set of measurements Zk . Thus in principle, the optimal estimate based

on any desired criterion may be obtained from (2.19). This is

considered in section 2.4.
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2.3.3 The prior pdf of the state vector at time tk+1

To establish, by induction, the general property that the prior

pdf of xk (equation (2.4)) is a fully specified Gaussian mixture, it

is necessary to derive the pdf of Xk+1 from the result

(2.19). This pdf may be derived from p(xklZk , 'k) (note 9k is

reinstated here) via the propagation equation (2.1). This information

together with Z and Rk is denoted k+ , which is all theZk k+1'

prior information available at time tk+I * The prior pdf of _Xk÷I

may be written:

P(+ p(k+llxk)p(xk+1)dxk (2.20)

P(x.k+lxk) is defined by the state propagation equations, and the

second term:

P~x-l-9~l)= P(x.I(lzk ' -?k)

since the extra information on state propagation from tk to tk+I

does not contribute to the pdf of state at tk Substituting

equation (2.19) into equation (2.20) and performing the integrations

(see Appendix A.3) gives:

P(r+ 41k+l) = ? Pr{k k+,}P(xk+l _'kt , k+1) (2.21)
k=1

where Pr = -kB

and P(-+l J'!'kz ' fk+I) = r('-k+l ; - .~. ' +

with

.k+I Zn
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and

T TMk+1 £ = (DkPT + FQT

The pdf (2.21) is of the same form as equation (2.4): it is

a fully specified Gaussian mixture. Hence the initial supposition of

section 2.3.1 is proved by induction.

2.4 Discussion

It has been shown that the posterior pdf of the target state,

just after incorporating the latest set of measurements, is a Gaussian

mixture given by equation (2.19). The recursive procedure required to

obtain this result is shown in the flow diagram, Fig 2.1. This

procedure constitutes the optimal tracking filter for the problem

stated in section 2.2. The Gaussian mixture (2.19) is a

complete description of the filter's knowledge of the target state at

time step k . Each component of the mixture represents a potential

target track and is a Kalman filter estimate of the state vector

based on a possible history of true and false measurements. At time

tk the nk components represent all feasible track histories. The

weighting 8k£ is the probability that track history Z is the correct

one.

The pdf of target state contains all the available information so

that, in principle, an optimal estimate based on any desired criterion

may be obtained. For example t1e minimum mean square error estimate is

the mean of the distribution (see Jazwinski 27). From equation (2.19)

the posterior mean of xk is given by:

nk

Z(2.22)
k=I
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which is a weighted sum of the mean state vecLors corresponding to

each possible track history. Also the covariance of this estimate may

be obtained from (2.19) (see Appendix B):

kZk) - T (2.23)

£=1

The mean may not be the most useful estimate for the state vector and

in any case, a single value of xk is a somewhat inadequate summary of

a mixture distribution, especially if there are significant well spaced

components.

For most interesting cases, the number cf components n k rapidly

becomes very large with increasing k (see equation (2.19)). This

rapid growth in the nuirblr of components may be viewed as a branching

process. For instance, suppose that at time step k-I , the mixture

disLribution comprises two components. So there are two feasible

tracks which are projected forwards to time step k . Suppose that at

this time two measurements zkI and zk2 are received. There are

three possibilities:

k kO:zk1 and zk2  are false

Tk1 : zkl is true and zk2 is false

or

Tk2 : zk1 is false and Ek2 is true

Thus the two feasible tracks from the previous time step may each be

updated three different ways, giving rise to six feasible tracks at time

step k (see Fig 2.2). Since every component must be propagated at
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each time step, implementation of the optimal filter is impractical,

and to proceed approximations must be imposed. This is the subject

of the next chapter.
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Fig 2.2 Growth of hypotheses or feasible tracks
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3 CONTROLLING THE GROWTH OF MIXTURE COMPONENTS

3.1 Introduction

To implement the tracking filter described in the previous

chapter, it is essential to control the growth of the number of

components in the Gaussian mixture (equation (2.19)) at every time step.

The maximum number of components that can be allowed, depends on the

computing power (in terms of storage and speed of operation) and the time

available to perform the calculations ot the filter recursions. The

maximum number NT of components allowed in the mixture after

approximation should be chosen so that the probable increase in the

number of components from measurements received at the following time

step is within the capability of the processor. If the growth exceeds

this capability, the posterior pdf (2.19) may be truncated in

an arbitrary fashion, rather than be subject to a considered

approximation.

In this study, control of the growth of hypotheses is achieved in

two stages at each time step. Firstly a coarse acceptance test is

applied (see section 3.2), which rejects any hypothesis that appears

to be very unlikely, on the basis of prior information. This control

is applied at point A on the filter flow diagram, Fig 2.1. This test

is computationally inexpensive as the unlikely hypotheses are rejected

before their corresponding posterior mixture components need be

evaluated. Hopefully the effect of this acceptance test on the

posterior distribution will be insignificant. Since it is quite likely

that the number of components left will still be excessive, further

reduction may be necessary. This is applied at point B on Fig 2.1,

which is after the posterior mixture distribution of the target state

has been compiled from all hypotheses that have passed the coarse
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acceptance test. The second stage is to approximate the mixture dis-

tribution and so reduce the number of its components from a posterior

point of view (ie after filter update). To reduce the number of

components below the specified limit, NT , it may be necessary to

make significant modifications to the distribution, and so careful

consideration should be given to the design of this approximation

method as it will affect filter performance.

What we require from a mixture reduction algorithm is discussed

in section 3.3 and reported methods for such approximations are

reviewed in section 3.4. It is argued that these reported techniques

do not adequately fulfil our requirements and so two new approximation

algorithms have been developed (see sections 3.6 and 3.7). The

performance of these reduction algorithms for a tracking problem is

assessed by simulation in the following chapter.

3.2 Coarse acceptance test

Each component of the posterior pdf (2.19) of target state is

generated by updating a feasible track from the prior pdf with either

one of the received measurements or by prediction on the assumption that

all received measurements are false (see section 2.3). It is most con-

venient to generate equation (2.19) by considering each feasible prior

track in turn, and evaluating all the possible posterior tracks which

spring from that branch. Consider the prior track, or component i of

equation (2.4), that corresponds to hypothesis rk-1 i The prior pdf

of the true measurement under 'k-1 i is the Gaussian with mean ki

and covariance Ski . From knowledge of this distribution, an acceptance or

validation region in the measurement space can be defined, such that under

hypothesis _k-1i ' the probability of the true measurement (if it is

detected) falling outside the region is very small. (This type of acceptance
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test is commonly applied to measurement-track association problems

where ambiguities may exist - see Blackmanl). If the validation region

is chosen so that the probability density of the true measurement at

any point within the region exceeds that at all points outside the

region, then since the distribution is Gaussian, the acceptance region

is the interior of a hyperellipsoid. Thus a measurement Zk. is

accepted for updating hypothesis ' if and only if:

(zkj - Hi T S(zkj - HxiJ < TA (3.1)
-j -ki) ki(-kj -ku

Note that since the false measurements have a uniform distribution,

this is equivalent to subjecting each measurement to a likelihood ratio

test. For a true measurement kj , under hypothesis k-i the
2

LHS of (3.1) is a sample from a X distribution with number

of degrees of freedom equal to the dimension of zkj . So once the

acceptable probability PM of missing the true measurement (if the

target is detected) under hypothesis "k-1 i has been chosen, the

2
required value of the threshold TA may be obtained from tables of X

The acceptance test has been used in all the simulations of this

study. To avoid any significant performance degradation as a result

of the acceptance test, PM was set to the very small value of 0.001.

This correspunds to TA = 13.82 for two dimensional measurement space.

Also to take account of the possibility of rejecting the true measure-

ment, the detection probability PD should be replaced by PD (1-PM)

in equation (2.18). Thus, when the acceptance test is employed, even if
PD = 1 , a component is generated for the finite probability of missing

the true measurement.
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3.3 Requirements of a mixture reduction algorithm

The following criteria have been identified for the design of a

mixture reduction algorithm:

(i) The approximation should result in another Gaussian

mixture. This is necessary to allow the tracking filter

algorithm to be implemented as a bank of Kalman filters.

(ii) The algorithm should allow the maximum number NT of

components after approximation to be specified.

(iii) Whenever possible, reduction should be achieved without

modifying the 'structure' of the distribution beyond some

acceptable limit. Conversely, to avoid retaining unnecessary

components, reduction should continue until this limit is reached,

so that the approximation may contain less than NT components.

Note that this criterion is in terms of mixture structure

modification because it is feasible to define and compute such a

measure. Also it is likely that the extent of modification is

related to practical performance measures, such as the probability

of losing track, which cannot be readily computed as a function

of mixture approximation.

(iv) Intuitively, the approximation should preserve the mean

and covariance of the original mixture. Unfortunately, after

propagation of the approximated mixture via the filter update and

prediction relations, the mean and covariance of the updated

mixture will not, in general, coincide with those of the optimal

solution.
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(v) The reduction algorithm should be computationally

efficient (reduction must be accomplished within the filter

update period), even when the original mixture consists of a

large number of components (for example over 100), each with a

different covariance matrix.

3.4 Review of mixture reduction techniques

A number of techniques for controlling the growth of the mixture

distribution have been reported. The simplest method is to reduce the

mixture to a single Gaussian component at each time step, and the

crudest means of achieving this is to choose that mixture component

corresponding to the most probable hypothesis. When the probability

of detection is unity, this corresponds to the nearest neighbour

approach, ie update the track by using the measurement z which

minimizes the expression:

( H- Ik)T S-I(_ _ H-)

However this technique takes no account of the possibility that the

wrong hyoothesis may have been chosen and results in what is essentially

a decision-directed filter (see Bar-Shalom3). A considerable improve-

11
ment on this method is the Probabilistic Data Association Filter (PDAF)

37or probabilistic editor , in which the single Gaussian approximation

is chosen to match the mean and covariance of the full posterior

mixture (see Appendix B, equations (B-5) and (B-6)). Thus the

hypotheses are effectively combined and the uncertainty is recognized

in the covariance of the approximating Gaussian. The PDAF has been

promoted principally by Bar-Shalom and it may be thought of as a

lower bound on the range of possible approximations meeting requirement

(iv) (the mean and covariance are preserved); the upper bound being
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obtained when all components are retained. The PDAF does not meet

requirements (ii) or (iii). The filter performs well in a numbec of

cases (see Ref 15) and is computationally very economical. However

in many circumstances, the single Gaussian approximation will destroy

important structure in the ýmixture distribution, especially when a

number of well spaced components are present. In this case it should

be better to consider approximations which retain several components.

Singer et aZo have developed an N-scan filter in which

components of the mixture distribution a-e combined according to the

history of hypotheses. If several components result from updating by

the same measurements over the last N-scans, then the components are

combined. For a particular N , the performance of this method is

likely to depend on the responsiveness of the filter to incoming

measurements. This in turn depends on the covariances Q and R

If the filter is very responsive, components with the same measurement

history over recent scans will be very similar and the consequent

performance penalty in combining these components should be small.

A disadvantage is that the number of components retained is not limited

(requirement (ii)). However provided N is small, the algorithm should

be computationally efficient: no measures of similarity need be

calculated, although the recent history of measurement acceptance must

be stored. For the simulation example reported in Ref 10, near

optimal performance is claimed for only a single scan memory.

Gaussian mixture distributions with an increasing number of

components also occur in system switching problems, where the parameters

of the system are subject to abrupt changes or jumps. Thus approximation

techniques have also been developed to implement filters for these

problems (see the survey by Pattipati and Sandell 38). A technique
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known as the generalized pseudo Bayes algorithm (GPBA) has been

39
developed by Jaffer and Gutpa , which is the equivalent of the N-scan

memory filter. In a similar vein, Blom has develo-ed an interacting

multiple model (IMM) algorithm in which components of the prior

distribution are merged before measurement update. The special case

of the GPBA where only a single Gaussian is propagated is called the

pseudo Bayes method, and this is the equivalent of the PDAF. The

41
pseudo Bayes method was proposed by Ackerson and Fu , although they

omitted the 'between components' contribution to the covariance of the

approximating Gaussian (see next section).

The remainder of the methods described in this section are

direct approximations of the posterior mixture distribution, without

reference to the measurement history, which allow more than one com-

ponent to be retained, All of these techniques involve merging or

discarding components of the mixture. The simplest of these schemes

is to retain only the N most probable components at each time step

(see Tugnait 42). A refinement of this method suggested in Ref 43 is to

combine components which are close in the sense of the Bhattacharyya

distance measure (see below) before rejecting components; but this does

not appear to have been implemented.

Alspach25 and Lainiotis and Park44 have suggested schemes in

which the mixture is approximated by merging and pruning operations,

none of which exceed a specified penalty measure. Alspach defines the

penalty of approximating the mixture p(x) by pA(x) as the

Kolmogorov variational distance between the two distributions:

K P( - pA()Idx
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45
Weiss, Upadhyay and Tenney also analyse the penalty of merging com-

ponents in terms of K Lainiotis and Park use a penalty measre

based on the Bhattacharyya coefficient p , which is defined by:

p = fp(•) pA(Q) dx .

p lies between zero and one, and p = I if p(x) = p A(x) . Thus

1 - p is a measure of the penalty of approximating p(x) by p A(x)

These distance measures are related by (see Kailath 46):

• 2 2

Bounds on these penalty measures in terms of the mixture parameters

have been derived for deleting a component and for merging a pair of

components (see Refs 25 and 44). The authors suggest that fixed

acceptable penalty levels should be chosen and that the mixture should

be reduced by merging and pruning operations which do not exceed these

penalty levels. The method of Lainiotis and Park would require the

calculation of the Bhattacharyya coefficient between every pair of

mixture components. This would be very time consuming and the method

does not appear to have been implemented. The method of Alspach

assumes that the covariance of all components is the same. This

situation is maintained as filtering proceeds by ignoring the between

component contribution to the covariance of the merged components, and

so overall covariance is not preserved with this method.

The mixture reduction techniques derived in the following

sections may be viewed as developments of these direct approximation

methods. The new algorithms, which are essentially merging operations,

cater for components with different covariances, and the maximum number
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of components after approximation may be chosen as required. Also, at

bach time step, the overall mean and covariance are preserved, save

for certain insignificant components which may be discarded. The

algorithms are based on the premise that changes to the 'structure' of

the mixture should be minimized. The measure of structure is derived

from a decomposition of the mixture covariance matrix.

3.5 Mixture structure: the covariance matrix

Consider any N-component mixture distribution with pdf:

N

p(x) iPi W
i=I1

where pi(x) is a component pdf

and S. is a probability associated with the ith component such

that:

S. > 0

and

Nz B = 1

i= 1

The covariance matrix P of this mixture may be decomposed into two

contributions, W and B (see Appendix B, equation (B-3)):

P = W + B
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N

where W B P

i= I

N

B Z =

i=1

N

i= 1

is the mean of the distribution and :. and P. are the mean and

covariance of the ith component. The matrix W may be interpreted as

the contribution from the covariance 'within' each component of the

mixture and it depends on the spread of each individual component.

B may be interpreted as the between component contribution which is

due to the separation between the mixture components. B and W are

both symmetric matrices, W being positive definite and B being

positive semidefinite.

Suppose that the mixture distribution is approximated by merging

several components together. If C is the set of subscripts of

components to be merged, then the probability mass of the new component

is:

'= Z i (3.2)

ie ¢

To preserve the overall mean of the mixture (requirement (iv)):

N

iZBi •i = B' •' + • i"_--i~l i+

S ... =,- = mmimmmmmmm mmnmm m m
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so that the mean of the new component is given by:

1 B. R (3.3)

iE:¢

Also to preserve the overall covariance, from equation (2.23):

N

1=1

- Z i Pi + *. *i + s'(P' + ' -T ) T

so that the covariance of the new component is given by:

P Z- i + ._ ) - _ , _ ( 3 . 4 )

Although the overall covariance P is unchanged, this merging of

components results in a loss of between components covariance B which

is balanced by an increase in W . To see this, let W' and B' be

the within and between covariances of the approximated mixture. Since

overall covariance is preserved:

P = W + B = W' + B' (3.5)

Thus the matrix L defined as:

L = B -B'

is given by:
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L W' - W

= •'P' - Si

ijE

S • •• • -, j, T,

a (3.6)

iEcC

which is a positive semi-definite matrix. This shift of covariance

from B to W is a rough measure of the change in the structure of a

mixture distribution when components are combined. (Techniques have

been developed for Cluster Analysis using a similar decomposition of

the data scatter matrix (see Hand 47).)

3.0 The Joining Algorithm

3.6.1 Derivation

Ideally the final partition of components into sets for merging,

should be such that the increase in some cost function is minimized.

However to reduce the mixture from N to M components, this could

involve the evaluation of the criterion for every possible partition

to identify the minimum. Such a procedure for a number of different

values of M would be far too time consuming and so a suboptimal

approach has been adapted from the agglomerative methods of Cluster

Analysis (see Hand 47). In this approach, which we call the Joining

Algorithm, a pair of components are merged at every iteration of the

algorithm. The components for merging are chosen to minimize the

incease in the chosen criterion at each stage. Clearly there is no
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guarantee that the final partition from such a procedure will achieve

the smallest possible value of the cost function.

To implement the Joining Algorithm using a cost function based on

an increase in the within component covariance, we require a suitable

scalar measure. From equations (3.3) and (3.6), if components i and

j are merged, the increase in W is given by:

B. 8.

Li j

One possible measure is the trace of L.. , which is the squared

Euclidean distance between the component means modified by the factor

B. B./(S. + B.) . However this has the disadvantage that it is1 J :i J

dependent on the scaling of the elements of the state vector and so

is problem dependent. This difficulty is avoided by using the

Mahalanobis distance (see Ref 47) to give:

2 . 8.

d2 =-)T 1I' (3.8)
d j B. + . (8 j)T P_ ^ j

where P is the covariance of the whole mixture. This distance

measure is related to L.. by:Ii

d =tr L

This measure is invariant under all non-singular linear transformations

of the state vector. At each iteration of the Joining Algorithm, the

two components which are closest in the sense of the distance measure

equation (3.8) are combined to form a new component defined by

equations (3.2) to (3.4).
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The minimum value of the distance measure at each iteration is

an indicator of the change in distribution structure resulting from

the merging of the two closest components. It is shown in Appendix C

that this minimum distance increases monotonically as reduction proceeds,

and so each merging operation increases this measure of structural

modification. (Distance measures with this property are said to be

48
not subject to reversals - see Anderberg , page 141.) Thus if a

threshold defining the acceptable modification to the distribution is

specified, approximation should proceed until the minimum distance

exceeds this threshold. For convenience we compare the squared

2
distance d.. with a threshold T . In choosing a value for the

ij
2

threshold T , it is useful to note that the squared distance d.. isIi]

bounded. To see this (from equations (3.5) and (3.6)):

P = W + B = W + B' + B - B'

- (W + B') + L..
1J

where P and W are positive definite n x n matricies, and B' and

-1
L . are positive semi-definite. Multiply through by P to give:

-1 -

I = P I(W + B') + P- L..1.]

Taking the trace gives:

n = tr[P_ (W + B')jJ+ tr[V Lii

-I
Hence since P and (W + B') are both positive definite,

2
d.. < nI.J
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Note that for our tracking problem, n is the dimension of the

state space. Thus we have chosen T to be a constant fraction of

this upper bound n . Simulation studies indicate that a value of:

T = 0.001 n

retains sufficient components to give, on visual inspection, a good

approximation to the mixture.

At each iteration, the algorithm determines the number NR of

remaining components, excluding the set of smallest components with

total probability mass (ie the sum of their $ weights) less than

B . If d.. exceeds T before N has been reduced below the
T ' ij R

specified maximum NT , then approximation continues beyond the

acceptable limit of modification. The purpose of BT , which has

been set to 0.01, is to avoid wasting effort on grouping insignificant

components. A flow diagram of the Joining Algorithm is given in

Fig 3.1.

3.6.2 An example of mixture reduction with the Joining Algorithm

The Joining Algorithm has been applied to a four-dimensional

Gaussian mixture distribution taken from the tracking simulation of

Chapter 4. For illustration, the distribution is only shown as a

function of two dimensions x and y , which are the Cartesian

co-ordinates of the target position. Fig 3.2 gives a perspective view

of the pdf of the original mixture, while in Fig 3.3 it is shown as a

contour plot with logarithmic contour spacing to bring out the shape

of the smaller components. The distribution is composed of 37

components.
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The final partition of components produced by the Joining

Algorithm with NT = 10 is shown in Fig 3.4. In this figure the means

of the original components are plotted as numbers which denote the

final component to which the original is assigned. The final components

are ordered according to decreasing probability mass, so component

number 1 has the largest a weight. The original components are colour

coded according to their ý weights as indicated on the diagrams. The

actual position of the target is also shown; it is close to the means

of two of the larger original components. Note that after reduction

the maximum permitted number of components, ie ten, has been retained,

indicating that the minimum squared distance measure has exceeded the

acceptable modification threshold T . The grouping of components

shown in Fig 3.4 appears to be consistent with maintaining, as far as

possible, the structure of the distribution, although it should be noted

that the distribution is four-dimensional and only two of these

dimensions are shown here. The mixture approximation corresponding

to this partition is shown in Fig 3.5; it appears to be an excellent

approximation of the original (Fig 3.2).

If NT is reduced to four, the components are further merged to

produce the partition shown in Fig 3 6. Here the original central

concentration of components has been split into three groups, of which

number 3 includes one of the less significant remote concentrations.

The mixture approximation for NT = 4 is shown in Fig 3.7. Comparing

this with Fig 3.2, it can be seen that the original mixture has been

si aificantly modified.

The history of how components are merged together for this example

is illustrated by the tree diagram of Fig 3.8. The mean (x and y

elements only) and the 3 weight of each of the original mixture
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components are listed on the left hand side of this diagram. The tree

structure which grows from these components indicates which components

were merged together and at what joining distance* this occurred.

Since the joining distance always increases (as shown in Appendix C),

the sequence in which components were combined is the same as the

ordering of the merging from left to right in the diagram. For this

reason it is always.possible to arrange the original components so that

none of the branches of the tree cross one another. Note that the

joining distance is plotted on a logarithmic scale and that all com-

ponents with B weights less than 0.001 have been merged at least

2 = -4once before the joining distance has risen above d = 5 x 10 , which

2
is only 0.0125% of the maximum possible joining distance d = 4

In this example the mixture could be reduced to 17 components

without exceeding the joining distance threshold T = 0.004 , but to

achieve a reduction to 10 components, the final joining distance

2was d = 0.028 . The numbering of the branches at this stage

on the diagram corresponds to the cluster numbers of Fig 3.4, so the

clusters are numbered according to decreasing probability mass. To

further reduce the mixture to only four components, the joining

distance increased to about 0.3, which is 75T. The branch numbers at

this stage corresponds to the cluster numbers of Fig 3.6. If merging

continues until only one component remains, the single Gaussian PDAF

approximation of the mixture is produced. The final merging is at a

distance d2 = 0.703 , within the theoretical limit of 4. (Further

examples of the final joining distance for NT = 10 and NT = 4 are

given in the next section.)

* We loosely refer to joining distance although this is actually the
squared measure d2.ii
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3.6.3 The control of mixture components for a tracking example

The Joining Algorithm (in conjunction with the coarse acceptance

test) has been used to control the growth of mixture components in a

simulation of target tracking using the filter described in Chapter 2.

The tracking problem is specified in Chapter 4.

In Fig 3.9 the number of r' 4xture components before and after

reduction by the Joining Algoritbm is shown for each time step during

the tracking operation. Between time steps, the number of components

increases according to the number of measurements passed by the coarse

acceptance test. Also shown is the final joining distance at each

time step. For this example the threshold T was exceeded on 42% of

the time steps to achieve an acceptable reduction specified by NT = 10

Note that when the final joining distance is below T , the number of

components in the reduced mixture is usually less than NT * When NT

is reduced to 4 (Fig 3.10), the final joining distance is almost

always greater than T , and on average is about ten times larger than

the average final joining distance for N = 10
0 T

3.7 The Clustering Algorithm

3.7.1 Derivation

The second algorithm is based on the proposition that the mixture

components with the largest s weightings carry the most important

information. Thus starting with the largest component, this algorithm

gathers in all surrounding components that are in some sense close to

the principal component. Subsequently the largest component of the

remainder is selected and the process is repeated until all the com-

ponents have been clustered. This is called the Clustering Algorithm.
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The distance measure chosen to represent the closeness of com-

ponent i to the cluster centre is defined by:

2 ___T__ T -1

7-477 N -C c c) (39
1 c

where B , x and P are the probability mass, mean and covariancec --c c

of the principal component, and Bi and xi are the probability mass

and mean of the ith component. This is the same as the distance

2measure d.. of the Joining Algorithm, except that the distance isii

normalized to the covariance of the cluster centre rather than the

complete mixture. Indeed equation (3.7) is the motivation for the

2 2
definition of D. . Note that D. is independent of the covariances1 1

of components being tested for clustering and that the selection of

components for each cluster only involves the inversion of one

symmetric matrix PC . Any component i for which D.2 < T is
c 1

selected as a cluster member. The threshold T defines the

acceptable modification to the distribution.

In choosing Ti , it is helpful to first consider the measure
'2

D. defined by:
i

DI = T~(*2 \ ý cjT cs-1i ýc
'22

If the criterion for clustering a component i were D!2 < Tr'

then any component i whose mean were to fall within the hyperellipsoid

defined by T' would be clustered. This hyperellipsoid is a contour

of constant probability density of the prinicipal component and the

proportion of probability mass enclosed is a measure of the selectivity

of the clustering operation. If T' were chosen so that only a small

proportion, say 1%, of the probability mass of the cluster centre were
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enclosed, then the structure of the distribution should be little

altered by clustering. However D. is independent of the probability

mass B. of the component, and intuitively, merging a large component1

would have a greater effect on the mixture than merging a small com-

ponent. The modifying factor B. B /(Bi + B c) biases this distance

so that small components are more easily clustered while large components

retain their individuality. It is suggested that the threshold for:

2 i c D 2
S B.+B i

i c

should be chosen so that small components with B weights less than

0.05 are more readily clustered, while components with B weights

exceeding 0.05 are clustered less readily. Fig 3.11 shows that the

contour B. S /( + B ) = 0.05 is close to the line B. = 0.05 inside
1 1 1

the region of interest, except when B. is nearly equal to c Thus

it is suggested that to give a good mixture approximation, the threshold

for D. shiould be set to:
1

TI = 0.05TI

where T' defines the hyperellipsoid containing only 1% of the

2
probability mass. (TI can be found from tables of X with the

number of degrees of freedom equal to the dimension of the statespace.)

Each cluster of components (some clusters may consist of a single

component) is approximated by a single Gaussian defined by equations

(3.2) to (3.4). Clustering proceeds until the probability mass of the

unclustered components is less than BT * As for the Joining Algorithm,

the purpose of BT 9 which is set to 0.01, is to avoid wasting effort

on clustering insignificant components. If the number of clusters is
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less than or equal to NT , the unclustered components are deleted

and approximation is complete; otherwise further reduction is

necessary. This is achieved by repeating the clustering procedure on

the first approximation including the unclustered components, bu• with

the clustering threshold incremented by AT , ie T = TI + AT . This

clustering operation is iterated until the necessary reduction has been

effected. The choice of the increment AT is a compromise between

the number of iterations required and the possibility of clustering

more components than necessary. In this study, the value of AT is

fixed:

AT = 0.05 AT'

where T' + AT' defines the hyperellipsoid which contains 6% of the

probability mass of the principal component. Simulation work has shown

this to be a reasonable compromise. For the simulation examples of

this study, the statespace is four-dimensional, so from tables of X

the algorithm thresholds have been set to:

TI = 0.01485

and

AT = 0.02065

Although AT is normally fixed, an override is provided which may

increase the clustering threshold further to ensure that at least one

component is clustered on each iteration. This mechanism is shown in

the flow diagram of the algcrithm given in Fig 3.12.

3.7.2 An example of mixture reduction with the Clustering
Algorithm

The Clustering Algorithm has been applied to the same four-

dimensional Gmussian mixture distributioi, that was used to demonstrate

the optration of the Joining Algorithm (see Figs 3.2 and 3.3).
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For N = 10 , the final partition is shown in Fig 3.13 and the

corresponding mixture approximation is shown in Fig 3.14. The

approximation consists of nine components, although several algorithm

iterations were required; ie the acceptable modification limit was

exceeded. The composition of the final clusters is similar to the

grouping produced by the Joining Algorithm (see Fig 3.4), although

there are detailed differences. Also the mixture approximation is

very similar to that produced by the Joining Algorithm (see Fig 3.5),

and appears to be an excellent approximation of the original (see

Fig 3.2).

The partition of components and the mixture approximation

produced by the Clustering Algorithm with N = 4 are shown in
T

Figs 3.15 and 3.16. The partition of the components is very similar

to that of the Joining Algorithm with NT = 4 (see Fig 3.6), the

difference being the assignment of three components with 6 weights

below 0.001 and one component with 0.01 < B < 0.1 . It is chiefly

this one component which accounts for the obvious difference between

the Clustering Algorithm approximation and the Joining Algorithm

approximation (Fig 3.7) - also see the contour plot Fig 3.17. These

approximations are significantly different from the original (Fig 3.2).

3.7.3 The control of mixture components for a tracking example

The Clustering Algorithm has been applied to mixtures generated

by the same tracking example as used to exercise the Joining Algorithm in

section 3.6.3. Fig 3.18 shows the number of components before and

after reduction, the maximum clustering distance* threshold, and the

number of algorithm iterations for each time step with NT = 10.

* We loosely refer to clustering distance although this is actually the

squared measure D2
i
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Adequate reduction to within ten components is achieved with a single

algorithm iteration (that is with the threshold TI) on 72% of the

time steps, and no more than five iterations are ever required. Also

comparing the plot of threshold value with the plot of the number of

iterations, it can be seen that the override mechanism for increasing

the threshold value by a jump in excess of 6T has only been invoked

on three time steps. When adequate reduction cannot be achieved

without increasing the threshold above TI , the number of components

in the reduced mixture is never less than NT - 3 , showing that the

algorithm did not merge many more components Than necessary. Finally

note that the plot of the number of components before and after

reduction is similar to the corresponding plot for the Joining Algorithm

(see Fig 3.9). Also the plots of the maximum joining distance and the

clustering threshold show similarities.

Fig 3.19 shows the management of mixture components for NT = 4

The work load of the Clistering Algorithm is considerably increased for

this smaller value of NT . Adequate reduction with a single iteration

is achieved on only 22% of occassions, and a maximum of 11 iterations

were required for one time step. However the override facility for

increasing the threshold level was frequently employed, and without

this feature the maximum number of iterations would have been close

to 100. There is some similarity between the plot of number of com-

ponents before and after reduction and the corresponding plot for the

Joining Algorithm shown in Fig 3.10. However the match is not so good

as for NT = 10 , showing that for small NT the number of components

is more sensitive to the reduction algorithm employed. This is probably

because significant components have to be merged to achieve the

necessary reduction.
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3.8 Conclusions

Two new mixture reduction algorithms have been developed to meet

a set of requirements for Bayesian tracking filters. These algorithms

have been derived from the principle that the increase in the within

component covariance should be minimized when components are merged.

When applied to a Gaussian mixture distribution from a tracking example,

excellent approximations can be achieved provided the number of NT

components allowed in the approximation does not force significant

distinct components to merge. For small values of NT , the approxi-

mations produced by the two algorithms were clearly different and some

features of the original distribution were obviously blurred.

In Appendix D the computational requirements of the two reduction

algorithms are analysed. It is shown that if the number of components

before reduction is large compared with that after reduction, the

number of operations required by the Joining Algorithm lies between

the lower and upper bounds of the operation count for the Clustering

Algorithm. Also for the Joining Algorithm a large distance matrix

must be stored, while for the Clustering Algorithm storage requirements

over those necessary to hold the mixture components are negligible.

In the following chapter we compare the performance and the computation

time of the two algorithms and the PDAF for an example of the baseline

problem.
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4 PERFORMANCE COMPARISON OF THE JAF WITH THE CAF AND THE EFFECT OF
VARYING NT

4.1 Introduction

Simulation studies are essential for assessing the performance of

tracking filters employing the mixture reduction algorithms described in

the previous chapter. Since tracking is a statistical operation it is

necessary to carry out Monte Carlo simulation runs to obtain estimates

of filter performance. Performance has been assessed for an example of

the baseline problem: the tracking of a target moving in a plane. The

Bayesian solution of Chapter 2 has been programmed for the example, and

the arproximation techniques of Chapter 3 have been included to produce

a Joining Algorithm Filter (JAF) and a Clustering Algorithm Filter (CAF).

These filters both employ a coarse acceptance test (see section 3.2) and,

save for the reduction technique, they are identical. Also for com-

parison the single Gaussian approximation PDAF has been programmed.

The main objective of the simulations in this chapter is to compare

the performance of the filters and to examine the effect of varying the

maximum number NT of components allowed in the approximation. This

has been examined for a single set of problem parameters, chosen at a

point in the space where the JAF and the CAF outperform the PDAF. The

variation of performance over the problem parameter space for fixed

reduction algorithm parameters is assessed in Chapter 5. In all of these

simulations, the generated target trajectories and the statistics of the

simulated measurements are perfectly matched to the filter parameters.

Clearly in real life this is unlikely to be the case. In Chapter 6,

filter performance for data statistics mismatched o filter parameters

is assessed for a similar tracking problem. Also tracking performance

against some 'realistic' trajectories is investigated.
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4.2 The tracking problem

Target trajectories have been simulated using a second order model

49 ,50which is the basis of the a-B filter This model has been widely

used in tracking problems as it is simple, while providing an adequate

trajectory representation for many practical cases. The trajectory

described by the model is a variation about a constant velocity course,

whose magnitude and direction are defined by initial conditions. The

deviation from this mean course is controlled by the variance q of the

model driving noise. The second order model is defined by the following

equation:

2
1 At 0 0 At 0

0 1 0 0 At 0

-Xk+1 = , -k +* 2 k (4 I)

ok1 0 1 At 0 At 2 EA2

o 0 0 1 0 At

where the state vector xk represents the position and velocity of the

target at time kAt

T
xk = (x, *', y, ) ,

At is the time step between measurements, and Yk is a 2 x 1 vector

from a Gaussian random sequence with zero mean and constant covariance:

Q =(: :

---.. mmm.~~ qm.m m m ml
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Thus, to generate a trajectory Xk , Gaussian random numbers of

variance q were fed through-the recurrence relation (4.1),

starting from some initial condition x Note that the target

velocity described by equation (4.1) is a random walk.

At each time step k , a set of Cartesian position measurements

have been generated to simulate sensor measurements. This set consists

of at most one true measurement plus uniformly distributed false

measurements. The probability of a true measurement occurring is the

detection probability PD A true measurement Zkj is a Gaussian

perturbation about the target position and it is generated from the

state vector xk using the equation:

ýkj y -k '(4.2)

where Vk is a 2 x 1 vector of Gaussian measurement noise with zero

mean and constant covariance: <r 0)
R = :

0 r

The false measurements are independent of the target and are uniformly

distributed over the sensor surveillance region, with density p per

unit area. At each time step, the surveillance region of the sensor is

arranged to be sufficiently extensive to include the target position

and the acceptance regions of the filters, while track is maintained.

Falseý measurements were simulated by generating Ako pairs of uniformly
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distributed random numbers with appropriate scaling; Ak being the

area of the surveillance region at time step k

At each time step, every simulated measurement is passed to the

tracking filters which attempt to estimate the current target state

vector. The following information is available to the filters:

(i) the value of the initial state vector xi P so the

initial position :.nd velocity of the target is known perfectly,

(ii) the model of target motion, equation (4.1),

(iii) the relationship between the state vector and the true

measurement, equation (4.2),

(iv) the statistics of the false measurements (density p),

the true measurement noise (variance r), and the model

driving noise (variance q),

(v) the detection probability PD of the sensor.

The tracking filters do not know:

(a) the values of the state vector xk , or the noise vectors

Yk and wk at each time step,

(b) the identity of the true measurement.

Clearly this is an example of the tracking problem given in

section 2.2 and so the Bayesian solution of Chapter 2 may be directly

applied.
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4.3 Parameters of the problem

To analyse this tracking problem it is convenient to normalize

the variables so that the unit of time is At and the unit of distance

is rr . Then the non-dimensional form of the state vector is:

If the target model and measurement equations are written in the

normalized form, it can be shown that the statistics of the problem are

completely specifie'd by three non-dimensional parameters:

4
(i) S ,

r

the ratio which determines the values of the filter gains for the

standard ct-6 filter, ie in the absence of false measurements. As

this parameter increases the a-$ filter becomes more responsive to

position measurements.

(ii) pr , the expected number of false measurements falling within

a square whose side is one standard deviation of the measurement error.

(iii) PD ' the detection probability.

Since the initial state vector is assumed to be known perfectly, the

filter performance in normalized co-ordinates should only depend on

these three parameters. (This is because the problem may be written as

the estimation of the deviation about the nominal constantly velocity

course defined by the initial state vector.)
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The filter performance comparisons reported in the chapter are

for a single point in the parameter space:

4

r

pr = 0.012

and

P = 1

These values have been chosen to illustrate the possible improvement in

tracking performance of the new reduction algorithms over the PDAF.

A full investigation of filter performance over the parameter space is

reported in Chapter 5. For the above parameters, the equivalent Kalman

filter (receiving only true measurements) rapidly reaches steady state

conditions, and the standard deviation of the position error on one of

the co-ordinates approaches within 1% of its final steady state value

after only four time steps. Also the expected num~cr of false measure-

ments that would be received by an acceptance gate with PM = 0.001

based on steady state Kalman filter covariances ii 2.084 (see section

3.2). In the simulations, the initial target position was taken as the

origin, the initial speed was 10vrr/2,t and the initial heading was

chosen randomly from a uniform distribution over [0,27r] for each

replication. As noted, initial target position and velocity do not

affect the filter performance.

4.4 Track loss criterion and simulation program

The performance of the filters was assessed by measuring how long

they were able to maintain track on the target, -e the track lifetime.



83

Each filter was allowed to continue tracking the target until track was

lost. A track was deemed to be lost if either of the following criteria

were satisfied:

(iW The true measurement is rejected by the acceptance test for

five consecutive time steps.

(ii) X:k -Xk' > 10 axk

or

1ýk - yk' > 10 Gyk

for five consecutive time steps,'where (Xk ' 9k) is the filter estimate

(the mean of the posterior distribution) of the target position at time

step k , (xk , yk) is the actual target position at time step k , and

Gxk and ayk are the standard deviations of the position estimates of

the equivalent Kalman filter (ie the optimal filter for the same problem

but with c = 0 ).

These track loss criteria are testing for consistent rejection of

the truE measurement, or a tracking error which is consistently large

in comparison with the expected error of the equivalent Kalman filter;

consistent Deing defined as five time steps and large being defined as

ten standard deviations.

One hundred targct trajectories with associated measurements were

generated, so that the mean track lifetime and the distribution of

lifetimes could be estimated. The same hundred trajectories and

measurement sets 4ere used for each filter at each setting of NT

which was varied between I and 30.
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In practice, to avoid storing and reading large amounts of data,

the trajectory and measurements were generated as they were required by

the filter at each time step; ie data generation and filtering were

performed within a single computer program. The track loss test and

other assessment operations were also performed within this program,

which was used for the CAF/JAF comparison of this chapter and to

produce results for Chapter 5. The program includes two tracking

filters: the Bayesian filter of Chapter 2 and the PDAF which provides

a useful baseline for comparison. The Bayesian filter may be run with

either the Joining Algorithm to give the JAF or with the Clustering

Algorithm to give the CAF.

All computer programs were written in Fortran 77 and the filter

simulations were run on the Cray iS at RAE Farnborough. Thus where

cpu times are quoted, they are for this Cray computer. Due to the

structure of the algorithms, the 'vector' processing capabilities of

the Cray were hardly used.

4.5 Results

4.5.1 Average number of time steps to track loss

Fig 4.1 shows the average number NAVE of time steps until track

loss as a function of NT , for filters using the Clustering Algorithm

and the Joining Algorithm with thresholds set to the values given in

-ections 3.6.1 and 3.7.1. NT = 1 corresponds to the special case of

the PDAF, and clearly the filters which retain more than one mixture

component perform better than the PDAF for this example. The

Joining Algorithm filter gives slightly larger values of N than0 AVE

the Clustering Algorithm, possibly due to the setting of the thresholds

T and T
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Also shown in Fig 4.1 is the filter performance for the JAY with

T = 0 , ie with the acceptable modification check switched off. Note

that the original setting of T for the JAF does not significantly

degrade the filter's performance, and the the performance for all three

cases shown in Fig 4.1 is similar. For NT < 10 , NAVE rises

approximately linearly with NT , while for NT > 10 , NAVE is nearly

constant. Thus, for this example, NT = 10 appears to be about the

critical level below which tracking performance begins to degrade.

(The mechanism of track estimation is discussed in Chapter 5.) For

the JAF with T = 0 and NT very large, the mixture is not subject to

approximation, and so this constant level is the optimal value of

NAVE

Fig 4.2 shows the average number of mixture components before

and after reduction for the three cases of Fig 4.1. Comparing Fig

4.2a&b with 4.2c, the effect of the acceptable modification check,

defined by T1 or T , in regulating the number of components fur the

large values of NT is obvious. For small values of NT , the

approximation for all three cases is principally controlled by NT

itself. For this example, TI and T become the main regulators of

the approximation at about NT = 10 , so the acceptable modification

check appears to select the minimum nu if components for near optimal

performance. Clearly this cannot be guaranteed for other tracking

problems, but since the thresholds were not specially tuned for this

simulation, the performance with other problems may not be far from

optimal.

4.5.2 Distribution of number of time steps to track loss

In the previous section, the average track lifetime was discussed.

Tn this section we consider the distribution of track lifetimes about
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this mean. To illustrate the distribution and to compare the performance

of the CAF and JAF for individual replications, the track maintainance

times have been plotted in Figs 4.3, 4.4 and 4.5 for NT = 2, 4 and 30

respectively. In these diagrams each point corresponds to a single

replication, and the X and Y co-ordinates of the point are the

time steps at which the JAF and CAF (with original threshold settings)

lost track respectively. So points falling on the X = Y line indicate

that both filters lost track coincidently. For large values of NT

(eg NT = 30 , Fig 4.5), the performance of the two filters is

remarkably similar for the majority of replications. The few replications

biasing NAVE in favour of the JAF are obvious. For small values of

NT (e N = 2 , Fig 4.3), the points are scattered further from X = Y

although NAVE is almost identical for the two filters. These results

bear out the observation that the mixture approximations produced by the

two reduction algorithms are usually very similar for large NT , while

for small NT there are often clear differences.

Figs 4.6 and 4.7 show histograms of the data points from Figs 4.3

and 4.5; ie for the track lifetimes for the JAF and CAF with NT = 2

and NT = 30 . It can be seen that those track lifetimes exceeding

20 time steps can be well fitted by an exponential distribution of

the form:

-' (t-t*i) for t tmi
ini

p(t) =

L0  
otherwise

iere (tmin + a) is the average lifetime of tracks which survive fcr

2at least tmin = 20 tine steps. This is confirmed by a x test:
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the exponential hypothesis is only once rejected at the 5% level of

significance for any of the 24 sets of replications. This exponential

distribution indicates that after 20 time steps, the probability of

losing track is independent of track lifetime, ie after an initial

transient the filters reach steady state conditions. The value

tmin = 20 was chosen by examining the transient behaviour of the

equivalent Kalman filter (see last paragraph of section 4.3) and by

inspection of the simulation results. The distribution parameter a

may be interpreted as the average number of time steps that a track will

survive in steady state conditions. Estimates of a are shown in

Fig 4.8. These values are slightly greater than NAVE - 20 . as tracks

surviving for less than 20 time steps are excluded.

It is important to establish the distribution of track lifetimes

as this allows one to specify confidence limits on the estimate of a

For an exponential distribution, the 95% confidence limits are

approximately:

((1+ -1.9_6\ L 196)~~

where N is the number of replications used to estimate a . These

limits define a fixed interval when track lifetime is plotted on a

logarithmic scale. In the performance estimates of the following

chapters, these confidence limits are shown with NAVE , on the

assumption that track survival times are also exponentially distributed

in these cases and that tmin is small compared with NAVE

S. . . .. ,,. a l i i I I m i AVE
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4.5.3 Computation time

Fig 4.9 shows the average cpu time TAVE for the filters to

perform a single time step. The time scale (which is logarithmic) is

normalized to the average cpu time for a single PDAF time step which,

for the data simulated here, was 1.12 ms on a Cray IS computer. The

computational effort is divided between the propagation of mixture

components or tracks and mixture reduction. For the two filters with

the original threshold settings (Fig 4.9a&b), TAVE falls rapidly to

nearly constant values for NT > 10 . Also for low values of NT most

time is spent reducing the mixture, and as NT increases more time is

required for track propagation while the mixture reduction time decreases.

This is explained by Fig 4.2: the initial high values of TAVE are due

to time spent reducing large mixtures which result from inadequate

approximations at values of NT < 6 . Except for the case NT = 6 , the

JAF was more time consuming then the CAF, usually by about 50%, and as

expected, the execution times for the filters were in all cases

considerably greater than the PDAF. However for NT > 10 , the five

fold increase in *ýxecution time for the CAF may well be an acceptable

price for the performance improvement offered by this filter.

The time tauten by the JAY with T = 0 is shown in Fig 4.9c.

This clearly shows the value of the acceptable modification check in

the reduction algorithms: for the insignificant improvement for

NT > 10 over the filter with the original threshold settings, there

is a large increase in computational overheadc. The extra processing

time is required for the propagation and reduction of the extra tracks

generated when the full NT components are retained for NT > 10

(see Fig 4.2).
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4.6 Conclusions

For the chosen simulation example, the JAF and CAF both give a

substantial performance. improvement over the PDAF. The penalty for

this is the increased computational requirements of the more complex

filters. Minimum computation time and near optimal performance were

obtained when satisfactory mixture approximation (defined by the

algorithm thresholds T and T ) was achieved within the maximum

number NT of mixture components allowed. Under these conditions the

track survival times for the JAF and CAF were identical on at least

85% of the replications. This suggests that filter performance is not

highly sensitive to the method of mixture reduction, provided that the

most important mixture components are retained. However, the comput-

ation time for the JAF was almost always greater than that for the

CAF, usually by about 50%. Thus in the remainder of this study the

Clustering Algorithm is always used for mixture reduction.
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s r'T, TT- j (Z TTTT'tTC Or 'rVV 'r" AND THE PDAF

5.1 Introduction

The performance of the tracking filters for the problem

described in section 4.2 depends on only three problem parameters.

If the probability of detecting the true measurement is unity, the two

remaining parameters are pr , the normalized density of false measure-

ments, and qt 4/r , the normalized acceleration variance of the target.

The primary aim of this chapter is to examine the performance of the

CAF as a function of these two paramcters. The -

the average track survival time NAVE , and the baseline for the

assessment is the performance of the PDAF. We shall attempt to

identify the region of the parameter space where the more complex CAF

gives a significant performance improvement over the PDAF. In the light

of the simulation example of the previous chapter, the maximum number

NT of components that may be retained by the Clustering Algorithm has

been set at 20. It is hoped that these simulation results will provide

an assessment and design aid for this type of tracking problem.

In the second part of this chapter (section 5.3), a single run of

the tracking filters is examined in detail. The purpose of this

demonst - on is to give a physical insight into how the Bdye.iaLI

filter ez. ate is produced. The example is of a situation where track

loss may be avoided by the retention of more than one mixture component

(using the Clustering Algorithm).
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5.2 The performance of the CAF over the problem parameter space

5.2.1 Presentation of results

The average track survival time NAVE for the CAF and the PDAF

is shown as a function of Pr in Figs 5.1 to 5.5 for qt 4/r = 10-4,

10 , 1, 10 and 10 respectively. As in Chapter 4 the initial state

vector was known perfectly, and the filters were run until the track

loss criteria of section 4.4 were satisfied. NAVE is the average of

100 replications and 957 confidence limits are shown with each point

(assuming track lifetime is exponentially distributed). Also shown

is the average track lifetime NL for a constant velocity prediction

on thL basis of theý perfectly known initial state vector. For this

prediction measurements are ignored; so that the average track lifetime

NL of ýhe prediction estimate is independent of pr .NL should

provide a lower limit on filter performance which may be approached

as the relative density pr of false measurements becomes large. Note

that NL increases as qAt 4/r decreases, ie as the normalized level of

target manoeuvre decreases. The average number of mixture components

before and after approximation is also shown in Figs 5.1 to 5.5. The

average cpu time required to perform a single time step for the CAF and

the PDAF is recorded in Table 5.1. For each pair of problem parameters,

this table also indicates whether all replications were halted by just

one of the two track loss criteria.

The parameter pr is the density of false measurements relative

to the true measurement error variance. However the difficulty of the

tracking problem is likely to depend on the density of false measure-

ments from the 'point of view' of the filter. Consider a single

feasible track corresponding to a mixture component of the state pdf.
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For given pr , the numbcr of false measurements that are plausible

candidates for updating this track increases with qt 4 /r , ie as the

variance of target manoeuverability relative to r increases. On this

basis a more appropriate measure of problem difficulty may be the

average number of false measurements passed by a filter acceptance test,

(see section 3.2). It is convenient to use the acceptance region based

on the equivalent steady state Kalman filter problem, as this is

independent of the values of individual measurements. The area A of

this acceptance region is given by:

Trr TA
A 1= - A

where a is the steady state value of the position Kalman gain and
TA = 13.82 is the acceptance threshold corresponding to a 99.9%

chance of accepting the true measurement. It can be shown (see

49
Bridgewater for example) that a is given by:

2 2

where a = +
J4

and 
= q rt4

r

Thus the average number n. of false measurements passed by this

acceptance test is:
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pr TA
n.

which for given TA depends only on pr and qt 4/r . In Figs 5.1

to 5.5, the corresponding value of n is given with or for each of

the results shown.

5.2.2 Discussion of results

The filters show similar performance trends in each of Figs 5.1

to 5.5. As would be expected, for given qAt 4/r , track survival time

increases as pr and n decrease. Also the track survival time of

the CAF approaches that of the PDAF for both small and large values of

pr. (This convergence for small pr is not shown in Figs 5.1 and 5.2

as track survival time is so long in these cases, that the computation

time for the simulation would be prohibitive.) Between these extremes,

the CAF outperforms the PDAF. The average track lifetime of the CAF

exceeds that of the PDAF by a factor of 10 in some cases, although an

improvement factor between 3 and 5 is more common. The region of the

pr , qt 4/r space where the CAF gives a significant improvement over

the PDAF is sketched in Fig 5.6a. Although this diagram is only

4
approximate, the region clearly depends on qAt /r . In Fig 5.6b

the region of improvement is sketched for the parameter space n,

qt 4/r . In this space the dependency with qAt 4/r is not so strong,

but is still quite evident. So performance of the CAF with respect to

the PDAF is not solely determined by n .

As the filters' performance deteriorates for increasing pr , so

the average number of mixture components before approximation increases.

This is the response of the filters to the increasing difficulty of the

tracking problem. Eventually the relative density or of false
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measurements becomes so great that the received measurements are of

very little use to either filter; NAVE approaches NL , the average

track lifetime for a simple prediction. In these circumstances the

filters generate a large number of mixture components (often averagiz.g

over 100 before approximation) and consequently the average computation

time for a single filter time step becomes very large, particularly for

the CAF (see Table 5.1). It is quite possible that in these cases,

performance of the CAF is being limited by NT (compare with

section 4.5.1). Table 5.1 also shows that for large pr every track is

lost to the excessive error check, Criterion (ii) (see section 4.4).

As pr is reduced, the average number of mixture components

retained by the Clustering Algorithm decreases towards the lower limit

of a single Gaussian. Thus the CAF approximation approaches that of

the PDAF, which explains the convergence of NAVE for the two filters.

Note, however, that in several cases where the average number of mixture

components after reduction for the CAF is only fractionally above unity,

the average track lifetime for the CAF is about three times that of the

PDAF. Also, in these cases, Table 5.1 shows that the average CAF

computation time per filter iteration is only about twice that of the

PDAF. The convergence of NAVE for the CAF and PDAF with decreasing

pr can be clearly seen in Figs 5.3 to 5.5. The same effect may be

4 -2 -4
expected for qLt /r = 10 and 10 , but as already explained the

computation time for the necessary simulations is prohibitive. As Pr

decreases, the average number of components before approximation tends

to 2 fcr both filters. One of these components corresponds to an

accepted measurement (nearly always the true measurement), while the

other corresponds to the prediction which allows for the possibility

that the true measurement has been rejected.
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5.3 An example of filter operation

In this section, to gain an insight into the operation anm

performance of the CAF and the PDAF, a sirLgle run of the tracking

filters is examined in detail. The chosen example has the following

parameters:

PD 1

4
gAt =

r

and

pr = 0.005

which gives n = 0.8683 . Also the maximum number of components allowed

after approximation by the Clustering Algorithm was set at NT = 10

These parameters determine filter performance. To generate an

interesting target trajectory the initial speed was chosen to be

u0 = iUvr/jt , initial LaZgeL Iiad..ng ',aý Thosen randomly and the

initial position was the origin. Fifty time steps of tracking have

been simulated.

5.3.1 Filter tracking performance

For this example, the target position at each timestep is shown

in Fig 5.7, together with the tracks or position estimates (ie the mean

of the pdf of target position) of the CAF and the PDAF. The true

measurement generated at each time step is also shown, although the

false measurements have not been plotted. The units of the X and Y

axes are normalized with respect to u 0t , and the scale of the Y

axis is slightly stretched.



The first few estimates of the filters are very accurate since

the initi;il target state vector is given. The CAF position estimate

follows the target quite well throughout and the most noticeable errors

occur at target manoeuvres. The tracks of the two filters are very

similar up to about time step 17, at which point the PDAF estimate

diverges from the trajectory. The PDAF apparently regains track

(probably fortuitously) at time step 24, but fails to follow the

subsequent sharp target maneouvre and soon finally diverges from the

target trajectory. The point at which the PDAF track fulfils the

second track loss criterion of section 4.4 is shown on the diagram.

As expected from the track plot, the CAF estimate does not alert

either of the track loss criteria.

To provide a precise reccrd of the tracking error history, plots

of the estimation error it position and velocity are shown in

Figs 5.8 and 5.9 for the CAF and PDAF respectively. The magnitude of

the actual position error at time step k is calculated from:

- xk) + (ýk - Yk)

where (*, k is the estimate of the target position at time step k

and (xk, yk) is the actual target position at time steo k . The

calculation of the velocity error is similar. In addition to the

actual error, an indication of the filter's o'mn view of its estimation

error is shown as a dashed linLe. The measure of error (denoted the

predicted error in Figs 5.8 and 5.9) is derived from the overall

covariance matrix of target state, and at time step k it is given by:
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P PX k +Y k

where P and P are the diagonal elements of the covarianceXk Y

matrix corresponding to target position. The measure of the velocity

error is similar. Also shown for reference is the error measure (obtained

from the covariance matrix, as above) for the equivalent Kalman tilter,

-•ze for the optimal filter in the absence of false measurements. Note that

the oquare of the predicted error measure for the filters is the expected

value of the actual error magnitude squared.

While the Kalman filter predicted error measure rapidly reaches a

steady state, the predicted errors for the PDAF and the CAF vary through-

out the track and are always greater than or equal to the Kalman filter

reference. This is because the covariances for the PDAF and the CAF, which

must operate with uncertain measurement association, depend upon the values

of the received measurements. However, the covariance of the Kalman

filter, which assumes that only true neasurements are received, is

independent of any measurement values. The predicted error measures

of the PDAF and the CAF cannot be better than that of the Kalman filter

since the latter is not corrupted by false measurements (see Ref 11).

The actual estimation errors of the CAF (Fig 5.8) show large

fluctuations, but there is no trend of increasing error through the

track. There are clear peaks in the Dosition and velocity tracking

errors at time step 25, when the target executed a sharp turn. At each

of these maxima, the CAF's pr-licted error mcasurc also peaks and closely

matches the actual error. Throughout the track, the CAF predicted error

is of the same order as the actual error and on several occassions

significant peaks coincide or are very close. Clearly, thr('ug$



statistical fluctuation, a perfect match over the whole track, 1 n.t

expected.

For the PDAF, a sharp rise in position error following track

loss is clearly shown in Fig 5.9. The filter's predicted position

error also rises, but is much smaller than the actual error by

the end of the track.

5.3.2 Filter operation

The CAF estimate of target state at a given time step is the mean

of a Gaussian mixture distribution, each component of which corresponds

to a feasible target track. As explained in Chapter 2, if several

measurements passed by the course acceptance test, these tracks sub-

divide so producing a tree likp pattern of potential tracks which are

controlled by the Clustering Algorithm. The growth of potential tracks

for the current example is illustrated in Fig 5.10. The overall CAY

estimate is shown as a dashed line, the PDAF estimate is shown as a

continuous black line and the actual course of the target is shown by

small circles. The potential tracks, after the clustering operation,

are shown as coloured lines, the colour of the line indicating the

weighting of the track (ie the probability that this is the correct

track). To show the potential tracks in the vicinity of the target loop

(labelled f on the track in Fig 5.10) more clearly, this part of the

picture has been enlarged and slightly stretched in Fig 5.11,

approximately by a factor of 6.

The number of potential tracks varies considerably over the

history of the track. It appears that the number of tracks increases
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when the target executes a manoeuvre (see points c and f on the

target trajectory in Fig 5.10). This is because the target model gives

the expected advance of the target as a etraight line, and so tentative

tracks into false measurements are produced. These extra tracks are

eliminated when a stea-dy course has been rpsumed (points b, d

and g in Fig 5.10), showing that the Clustering Algorithm is economical

in its management of potential tracks.

Th.oughout most of the track history, at least one of the potential

target tracks closely follows the path of the target, and so has probably

correctly selected the true measurements. Also note that when a tentatiLe

track with 8 weight above 0.5 is produced (green line), this track is

almost always close to the actual target path. At times when the filter

appears to have difficulty in maintaining track, usually no potential

track with a large a weight is produced (see Fig 5.11).

At point c and in the vicinity of point f on the target path

(Fig 5.10), the PDAF estimate diverges from the actual trajectory. At

these points, the Clustering Algorithm has allowed the growth of

diverging potential tracks, each with a significant B weighting.

Fig 5.12 shows contours of the approximated position pdfs of both the CAF

and the PDAF at the 17th time step (the point after label c in

Fig 5.10). The actual position of the target is also marked and it is

clearly associated with the dominant cluster component, which accoun-s

for 85% of the total probability mass of the mixture. The second most

important cluster component has a B weight of 0.12. The PDAI single

Gaussian approximation appears to be stretched between these two major

components. The :DAF approximation is the result of a separate track

propagation and approximation sequence, although up to this

time, the PDAF and CAF tracks are similar and so it is likely that
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the PDAF generates a fairly similar posterior pdf before approximation

at this time step.

To show how the position pdfs evolve, contours for the following

two time steps (18 and 19) are shown in Figs 5.13 and 5.14. At time

step 18 (Fig 5.13), after clustering there are now only two components.

The weak component of the previous time step has been eliminated.

The single Gaussian of the PDAF has been further stretched and flattened

so that its centre still lies between the two cluster components,

but has moved further away from the dominant component. At time step 19

(Fig 5.14) only a single Cluster Algorithm component is retained, which

is sharply concentrated on the target path. The PDAF approximation is

now well removed from the true path but still retains the elongated

form as a legacy of time step 17, but which is no longer relevant. This

illustration shows the importance of retaining more than one component

at critical times during the tracking operation.

The situation six time steps later (time step 25) is shown in

Fig 5.15. This is close to the label f in Fig 5.10 and here the CA-

is propagating two main clumps composed of eight components. The PDAI

has recovered from its poor pdf approximation at time step 19

(possibly through a fortuitous absence of false measurements in the

track vicinity) and again straddles the CAF mixture pdf. However, as

can be seen in Fig 5.10, subsequently the PDAF tails to follow the

target manoeuvre and the track is lost for good. The single Gaussian

approximation cannot cope with two diverging branches, each with

significant weighting.

Figs 5.16 and 5.17 show how the number of components of the

mixture distribution varies, and also the values of the most significant

S weights at each time step for the CAF and the PDAF. For the CAF, the
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values of the five largest B weightings after clustering are shown as

five time traces; whereas for the PDAF, the five largest B weightings

before approximation are shown. At each time step the B weights have

been ordered in decreasing magnitude, so the BETAI trace always shows

the largest value. Together with these traces, the number of mixture

components before and after approximation has also been plotted.

Throughout most of the track,the Clustering Algorithm (Fig 5.16)

keeps the number of components after approximation well below the

allowed limit of NT = 10 . Comparing Fig 5.8 with Fig 5.16, it can

be seen that when the filter is tracking well, the number of components

is kept low. Only when tracking becomes difficult, such as during the

target loop in this example, does the number of components rise and

significant S weighting extend to more than three components after

clustering. In Fig 5.17 it can be seen :hat as the PDAF became lost,

the number of components before approximation rose greatly and eventually

reached a maximum of 1070. This increase is due to the expansion of

the filter's acceptance region, which accompanies an increase in the

tracking error as perceived by the filter. Before track loss, the

5 weighting traces show that there are usually only two or three

significant components, one of which is usually clearly dominant. As

the PDAF begins to lose track, the dominance of any one component

declines, and the BETA4 and BETA5 traces show a temporary increase. As

the number of components rises well above five, all the BETAI to BETA5

traces fall towards zero as the weighting is shared amongest many

components. This indicates that at each time step the filter has

generated many hypotheses, each of which has a very small probability

of being correct.
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Finally, as an illustration of how the CAF responds to losing

track, the potential tracks produced by a different example are shown

in Fig 5.18. The parameters of this example are the same as the

previous case, except the density of false measurements has been

doubled. When the target manoeuvres, the filter's tracks split

into two diverging branches, one of which continues on the original

target heading while the other follows the target manoeuvre. However

this latter branch eventually dies out. This is probably due to the

true measurements having a similar, unusually large error on several

consecutive time steps, while by chance false measurements fell close

to the predicted target positions on the other branch. Note that after

loss of track there is a tendency to produce diverging tracks with

small B weights, and tracks with 5 weights above 0.5 are only

produced on two time steps out of twenty-three.

5.4 Discussion and conclusions

In section 5.2, the performance of the CAF has been compared with

that of the PDAF for the standard example of the baseline problem (second

order target model with true and false Cartesian position measurements).

The results presented in Figs 5.1 to 5.6 should enable one to obtain an

initial assessment of filter performance for a variety of two-dimensional

tracking problems. Even if the required problem is not of exactly the same

form as the standard baseline case, it may be possible to derive a rough

correspondence so that approximate values for the equivalent baseline problem

parameters may be found. An indication of the average track lifetimes

for the CAF and the PDAF with the required parameter values may be

obtained by interpolation or extrapolation from the presented results.

This should show whether the performance of the PDAF is likely to be

adequate for the application, and if not, whether the CAF can provide
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the necessary improvement. Clearly a detailed simulation should be

carried out to confirm this initial assessment before any implentation

is atrempted.

The values of the average track lifetime given in section 5.2

depend on the definition of track loss (see section 4.4). A track is

counted as lost if, over five consecutive time steps, either

(i) the true measurement is rejected,

or (ii) the tracking error is 'large'.

These criteria may not be appropriate for all applications. For

instance in Ref 11 track loss is only based on consistent rejection

of the true measurement, and it is independent of tracking error

(criterion (ii)). Under this reduced definition of track loss, the

average track lifetime would be much greater than that shown in our

results. This is especially so for the higher values of pr , as in

these cases track loss for all replications was due to criterion (ii)

(see Table 5.1).
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Table 5.1

PROCESSOR TIMINGS AND TRACK LOSS CRITERION

Computer cpu Criterion on

Problem parameters time for one which tracks

time step (ms) were lost

4
qAt 4 pr n CAF PDAF CAF PDAF

r

10-4 5 x 10-2 2.50 4.32 0.19 i and ii i and ii

101- 5.00 7.77 0.22 ii only ii only

2 x 10- 10.00 17.14 0.35 ii only ii only

5 x 10- 26.01 64.11 1.23 ii only ii only

1 50.01 93.13 4.15 ii only ii only

10- 10-2 0.68 1.50 0.19 i and ii i and ii

2 x 10-2 1.36 2.91 0.19 i and ii i and ii-2
5 x 10 3.39 10.41 0.32 i and ii i and ii

10 6.78 52.25 1.30 ii only ii only-1

2 x 10 13.57 157.48 2.26 ii only ii only

S2 x 10-4 0.035 0.32 0.15 i and ii i and ii
5 x 10-4 0.087 0.33 0.15 i and ii i and ii

10-3 0.174 0.34 0.16 i and ii i and ii

5 x 10-3 0.868 1.08 0.24 i and ii i and ii-2

1.2 x 10 2.084 5.93 1.12 i and ii ii only-2
2 x 10 3.47 702.58 1.53 ii only ii only-2
4 x 10 6.94 1267.19 3.27 ii only ii only

-5
10+ 10 0.02 0.31 0.15 i and ii i and ii

10-4 0.2 0.41 0.17 i and ii i and ii

5 x 10-4 1.02 1.34 0.54 ii only ii only-3
10 2.04 73.25 1.24 ii only ii only

2 x 10-3 4.08 3012.38 2.77 ii only ii only

104 10-8 0.0012 0.30 0.15 i and ii i and ii
10-7 0.012 0.30 0.15 i and ii i and ii

10-6 0.12 0.30 0.16 i and ii i and ii

-6

5 x 10 0.59 0.88 0.27 i and ii ii only
-5

10 1.17 2.21 0.52 ii only ii only

2 x 10 2.35 129.59 1.09 ii only ii only

S. .. • I.--.,-...-, l lm m
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6 THE SECTOR SCAN PROBLEM

6.1 Introduction

The tracking problem of section 4.2 has been constructed so that

performance depends on only a small number of non-dimensional parameters.

This facilitates the assessment of filter performance over a wide

variety tracking conditions (section 5.2). However this problem is

somewhat unrealistic, principally because practical sensors, such as

radars, usually produce measurements in polar co-ordinates rather than

Cartesians. To show how this complication can be managed, a 'sector

scan problem' has been devised. This example also serves to show how

the assessment of section 5.2 can be used to give a rough indication of

filter performance for a different tracking example.

The sector scan problem is to track a target passing through a

surveillance sector in the presence of false measurements. A sensor

at the origin produces position measurements in range and bearing, and

false measurements are uniformly distributed in polar co-ordinates.

On entering the sector, an initial estimate of the target position and

velocity is supplied to the filter. (Note that the question of

automatic track initiation is not considered in this study (see

conference proceedings of Ref 49).) Since the target could enter the

surveillance section from any direction, it is convenient to employ

Cartesian state variables which allow the target kinematics to be

represented by a linear model, in this case the usual second order

model. This introduces a non-linear relationship between the state

vector and the measurements, which complicates the filtering problem.

The sector scan problem is also used to investigate the effect

on performance of target trajectories which are mismatched to the filter



133

model. This is another practical difficulty that must be considered in

filter design. Two different types of mismatched trajectory have been

examined:

Wi) Trajectories simulated using the second order model with a

value for the acceleration variance q which is different from

that assumed by the filter.

(ii) Deterministic target paths consisting of periods of constant

velocity motion and deliberate manoeuvres.

6.2 Problem description and solution

The surveillance sector is defined as the region where X > 0 km

Y > 0 km and:

2km < X +Y2 < 20 km

Every second, this region is scanned by a single sensor located at the

origin, and a set of position measurements is passed to the tracking

filter. These measurements are in polar co-ordinates. The probability

of detecting a target that is within the sector is PD I and the range

and bearing errors on the true measurement are independent and Gaussian
2

with zero mean. The variance of the range error is a and the
r

2
variance of the bearing error is a 2. False measurements are uni-

formly distributed in polar co-ordinates. Thus the density of false

measurements per unit area decreases with distance from the origin (see

next section). Only one target is present within the sector.

When a target enters the surveillance region, the tracking filter

is initialized with an estimate of target position and velocity. This
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initial estimate has a Gaussian error of known covariance. The success

of the filter in tracking the target is assessed by examining the

position tracking error as the target is leaving the sector. Track is

said to be maintained if:

IR-xI < 10O x

and (6.1)

19 -y < 1Oa y

where (x, y) are the co-ordinates of the target on the last sensor scan

before the target leaves the sector, (R, Y) is the corresponding filter

estimate, and a and a are the standard deviations of the equivalentx y

Kalman filter estimate (see later). This definition of track loss is

derived from criterian (ii) of section 4.4. Cleaily the tracking filter

is not penalized for poor performance within the sector, but in practice

it has been found that if the track deviates significantly from the

target path, the filter is unlikely to regain track before the target

leaves the sector.

The tracking filgers which have been applied to this problem

employ the usual second order target model (equation (4.1)) expressed

in Cartesian co-ordinates, as this avoids the need for a non-linear

model written in polar co-ordinates. However this does introduce a

non-linearity between the true mpasurement and the target state vector.

Thus equation (2.2) for the baseline problem statement should be

replaced by:

z = h(x) + v (6.2)
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where z is the true measurement, x is the state vector and v is

the Gaussian measurement noise at some time step. For the present

example:

r M

ýx2 2

h(x) = ) (6.3)

tan - 1 (y/x)

and the covariance of v is:

(1 :i0•r

The use of r to denote range should not cause any confusion with the

measurement noise variance of the previous example.

If it is given that z is the true measurement and we attempt to

apply the Bayesian techniques of Chapter 2 to this problem, the

posterior pdf of x after updating with z will be non-Gaussian due

to the non-linear element h(x) . As the optimal Bayesian filter for

this problem cannot be written in a simple recursive form, the sub-

optimal extended Kalman filter (see Jazwinski 27) has been employed.

This filter is derived by linearizing about the state vector prediction
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at each time step and then applying the standard Kalman filter

relations. Thus at a given time step:

h(x) h(x) + V h(x) (x - x) + higher order terms , (6.4)

r i Th.
where L2 h(x_)L ax.• is the Jacobian matrix

h. is the ith element of h(x)

and x. is the jth element of x . For the present example,

from equation (6.3):

cos 0 sin e 0

= (6.5)

sin 8 cose

r r

where r -2 -2

and 6 = tan 1 (y/x) . To derive the extended Kalman filter, the

higher order terms in the Taylor expansion (6.4) are ignored.

It can be shown that the resulting filter recursions are the same as

those of the standard Kalman filter (equations (2.8)), but that the

innovation vector (z -Hix) is replaced by (z - h(x)) and elsewhere H

is replaced by [I h(x)] En particular the covariance of the

innovation is given by:

S =[hx)]M[I h~)]T +R .(6.6)



The output of the extended Kalman filter may be interpreýtej as

the mean and covariance of a Gaussian approximation to the true

posterior distribution. Thus when the false measurements are present,

the extended Kalman filter may be used to propagate feasible tracks

to make up a Gaussian mixture distribution for the target state. To

evaluate the mixture weights of this distribution, the prior pdf of the

true measurement for each track is required. This may be approximated

by a Gaussian in polar co-ordinates with mean:

and covariance S given by equation (6.6). Since the false measurements

are uniformly distributed in polar co-ordinates, the mixture weights

are given by equation (2.18) with Hx replaced by h(x) and S given

by equation (6.6). Clearly it is also convenient to carry out an

acceptance test in polar co-ordinates, using this Gaussian as an

approximation to the prior pdf of the true measurement. The filter

may be implemented using the PDAF or the Clustering Algorithm approxi-

mation in the usual way.

6.3 Generation of target trajectories and measurements

Trajectories of targets passing through the surveillance sector

may be generated either from the second order model as in the previous

example, or deterministic trajectories consisting of constant velocity

paths interspersed by deliberate manoeuvres may be generated. If the

second order model is used, the variance q of the random numbers

driving the model (the acceleration noise) may be chosen to be different

from the model noise assumed by the filters. This allows the effect

of parameter mismatch to be examined. The initial target heading on
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entering the sector for each simulated trajectory is chosen at random

from a uniform distribution over [0, 27] , and the initial target

speed is selected from a Gaussian distribution. The initial position

is that point on the boundary of the sector for which the initial

velocity vector passes through the centre of the sector. At each time

step a true measurement may be simulated and false measurements of

required density are generated over the complete sector. The simulation

of a trajectory ends when the target passes out of the sector. Two

separate random number sequences are employed. One of these is used

for generating the target trajectory and the true measurements, while

the other is used for generating false measurements. Thus the density

of false measurements can be changed without altering the trajectories

or the true measurements.

For this problem we shall not attempt to assess performance over

a wide range of parameters, but the performance about a principal set of

parameters will be investigated. For this principal problem, trajectories

are generated using the second order model with At = 1 second and the

standard deviation /q of the driving acceleration noise chosen to be:

-2 _ .
vq = 0.05 km sec 5'g

-1
The initial target speed is drawn from a Gaussian with mean 0.3 km sec

-1
and standard deviation 0.02 km sec . Fig 6.1 shows a sample of eight

trajectories generated with these parameters. For a sample of 100

trajectories, on average the target took 48 seconds to pass through the

sector. True measurements produced by the sensor (a radar for example)

have range errors of standard deviation c = 0.03 km and angular
r

errors of standard deviation = 0.01745 radians • 10 . The density
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-1 -1
of false measurments is p = 10.0 km radians , so that on average

18 1/2 p = 282.7 false measurements per scan are generated. The

sector is scanned every second and the probability of detecting the

target is P = . In Fig 6.2 the surveillance sector is divided into

54 cells of angular extent 10ae and of radial extent 100ar , and the

average (over 100 scans) number of false measurements per scan falling

within each cell is shown. As expected the sample mean fluctuates

about 1000arOe p = 5.236 . Initial estimates of target position and

velocity, which are available to the filters, are in Cartesian

co-ordinates. The standard deviation of the position error is 0.1 km on

each co-ordinate and the standard deviation of the velocity error is
-1

0.03 km sec for each co-ordinate. These principal problem parameters

are listed in Table 6.1.

No direct correspondence between the parameters of this problem

and the assessment example of section 5.2 (with Cartesian measurements) is

possible. However the number of false measurements falling within a cell

defined by the standard deviation of the true measurement error is

p arce = 0.0054 which corresponds to the parameter pr of the

assessment example. Also the non-dimensional parameter:

qAt 4

4 r Ge* range

is analagous to qAt 4/r of the assessment example. Hence taking the

standard range to be 11 km, ie to the centre of the sector, the

equivalent parameters of the assessment example are approximately:
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Pr = 0.005

and

qAt4 = 0.43
r

The closest data point for which an estimate of track lifetime NAVE

is available for the assessment example is:

pr 0.005

and

.2 t4 1 4

r

(see Fig 5.3). For these parameters:

NAVE = 78.03 for the PDAF

and

NAVE = 835.65 for the CAF

Assuming an exponential distribution for track lifetime, the probability

of a track surviving for at least t time steps is:

exp(- t/NAVE)

As noted, the average time for a target to pass through the sector is

t = 48 seconds , therefore we can expect the PDAF to maintain track

on about 54% of targets and the CAF to maintain track on about 94.4%

of targets.
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6.4 Simulation results

6.4.1 Correctly matched parameters

The CAF and the PDAF were applied to 100 replications of this

problem for the standard parameters given above. For the PDAF 72% of

the tracks were maintained while for the CAF 95% of the tracks were

maintained. Thus the performance prediction of the previous paragraph

was very accurate for the CAF but rather pessimistic for the PDAF. This

discrepancy is probably due to the imprecise correspondence between the

two problems and the neglect of any initial transient behaviour of the

filters. Fig 6.3 shows an example of the CAF and the PDAF tracking a

target across the sector. In this example the CAF successfully

maintained track although the PDAF track became lost. Fig 6.4 shows

an example of the extended Kalman filter tracking in the absence of

false measurements. This figure shows the true measurements produced

by the sensor; the increase in the measurement and tracking errors as

the range from the sensor to the target increases can be clearly seen.

Fig 6.5 shows how the tracking performance of the CAF and the PDAF

is affected by varying the density p of false measurements without

changing the target trajectories or the true measurements. Tracking

performance is shown for each of the 100 replications for p = 5, 10,

20, 30 and 40 km radians For each of these values of P two

traces are shown, one corresponding to the PDAF and the other

corresponding to the CAF. Each trace has two levels H and L

according to whether a track was held or lost for each replication.

It can be seen that for each value of p , every track held by the PDAF

was also held by the CAF. One might expect that those tracks held by

one of the filters for large p would also be maintained by that

filter for smaller values of o . However this i- not always so,
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because the random false measurements for a particular replication

change completely as p is varied. Similarly, some tracks lost for

small p are held for large p . As p is increased, the number of

tracks maintained by each filter decreases.

This can be seen more clearly in Fig 6.6 where the percentage

of tracks maintained by each filter is plotted against p 95%

confidence limites, derived from a binomial distribution since each

replication is an independent Bernoulli trial, are given with each

percentage. Also the average number of components before and after

reduction are shown for the held tracks. The results exhibit similar

trends as described in section 5.2 for the previous example. For

small p , the PDAF and CAF both hold nearly all of the tracks, but

for P > 5 km rad , the CAF becomes more successful at maintaining

track than the PDAF. The average number of mixture components

generated increases with p , as does the required processing time

recorded in Table 6.2 (part I). In this table the average computation

time per step is given for held tracks and lost tracks separately.

For small p , the computation time for held and lost tracks is similar

although for large p the average timings for lost tracks are much

greater, particularly for the CAF. This is due to the proliferation

of feasible tracks which occurs for large p when the target is lost.

Also shown in Table 6.2 (part I) is an indication of the accuracy

of the filters' own assessment of their tracking error in both position

and velocity. This consistency measure, denoted E , is derived as

follows. At each time step, the quadratic form:

(x _ R)T P- 1 ) (6.7)

L - •-, • • • ,,,, n aan • ~ ann mmn~n
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is evaluated, where x is the true value of the state vector, R is

the filter's estimate of the state vecor (ie the mean of the mixture

distribution) and P is the overall covariance matrix of the mixture.

If the filter's internal covariance P is compatible with the actual

tracking error x - :9 , then the expected value of the quadratic form

(6.7) is 4, because for this tracking problem the state vector

is four-dimensional. The statistic E given in Table 6.2 is calculated

by averaging (6.7) over all time steps for held and lost tracks

separately. Since the tracking error x - R may be correlated over

several time steps and it may not be a Guassian variable, we cannot

expect the distribution of the sum of (6.7) over all time
2

steps to have a X distribution. However since E is usually the

result of an average over many hundreds of time steps, if E deviates

from 4 by as much as one unit, it is reasonable to conclude that the

filter's internal covariance P is incompatible with the actual

tracking error. Table 6.2 shows that for both filters the value of

E for maintained tracks is usually slightly less than 4, but within

10% of this figure. This indicates that the achieved tracking error

is a little better than the filters' assessment, and this is possibly

because the maintained tracks are a biased sample in favour of the more

accurate tracks. For lost tracks, E is usually very much larger than 4,

showing that the filters seriously underestimate the tracking error.

The CAF is worse than the PDAF in this respect.

The actual mean square position tracking errors achieved by the

filters for the first 20 time steps are shown in Fig 6.7 for p = 5, 10

20 and 40 km rad These results are obtained by averaging the

square of the position error at a particular time step over all

replications. The mean square error is also shown for the maintained

tracks only. As a reference level the tracking error for the
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extended Kalman filter, which is supplied only with true measurements,

has been plotted. The results shown in Fig 6.7 are intuitively

reasonable. The Kalman filter tracking errors are smaller than those

for the filters which have to cope with false measurements, and the

errors averaged over all tracks are greater than those for held tracks

only. Errors for the CAF tend to be smaller than those of the PDAF,

although for p = 20 km- rad- the 13 tracks held by the PDAF have

a smaller mean square position error than the 86 tracks held by the

CAF. Thus it appears that PDAF tracks are only able to survive in this

case if they are able to achieve a relatively small position error in

the early stages of the track (average track length being 48 time steps).

6.4.2 Mismatched model noise

One would expect performance to degrade if the assumed values of

the filter parameters p, q, ar' ae and PD differ from their correct

values. Here we examine the effect of a mismatch in the parameter q I

the variance of the model noise, which describes the manoeuvrability of

the target. If the values of q assumed by the filters is less than

the correct value, the filters may judge actual target manoeuvres to

be highly improbable, in which case true measurements may be rejected

or given a very low probability weighting. If the value of q is

too high, the filters may give too much weighting to false measurements

which could only be true if the target had performed a large manoeuvre

incompatible with the correct value of q . An adaptive version of the

PDAF which learns an unknown value of q from a set of possible

51
candidates has been proposed by Gauvrit . However for the present

study only the fixed parameter filter has been considered.

The 100 trajectories simulated for the standard problem parameters

(see Table 6.1) were used to investigate the effect of supplying the
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filters with the incorrect value of q . The CAF and the PDAF have been

applied with Vqq set to 0.01, 0.025, 0.1 and 0.25 km sec- 2, as well as

-2
the correct value of 0.05 km sec . The percentage of tracks maintained

for these values are given in Fig 6.8 together with the average number

of components generated for the maintained tracks. (The error reference

fnr the track loss criterion ic obtained fromr. 'he Kalman filter using

the correct value of vq .) It appears that the CAF performance is less

sensitive to parameter mismatch than the PDAF. This extra flexibility

of the CAF is due to the filter's ability to retain several feasible

tracks. Indeed there is a slight (probably insignificant) performance

improvement for the CAF when Vq is doubled, although the percentage

of tracks held by the PDAF is reduced from 72% to 16%. When rq is

increased to five times its correct value, the number of tracks held by

the CAF is reduced by about one third, although the PDAF now loses all

of the tracks. As rq is decreased from its correct value, the

performance of both filters degrades at a similar rate. Also note that

the number of components generated by the filter increases with Vqq .

This is because with increasing rq , the filters believe the target to

be capable of larger manoeuvres and so are more ready to accept false

measurements.

Average computation time per step and the error statistic

are given in part II of Table 6.2. CAF processing time increases with

Vqq due to the increasing number of components generated. The reasonable

CAF track maintainance performance obtained when /q is five times its

correct value is at the expense of a 60 fold increase in computation

time for held tracks. The PDAF incurs only a small increase in

processing time although performance falls off rapidly for q too

large.
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The use of an incorrect value for q has a noticeable effect on

the error statistic E . W-.en q is too large, E is significantly

less than four for both held and lost tracks, showing that the filters

are overestimating their tracking errors, so that the fiiLcr Pains are

set too high. When q is too small, E is much greater than four

dwla&g LhaL the filterz are overoptimistic Tbout th;ir tracking

performance. In this case the filter gains are too small so that the

iiiters are insufficiently responsive to received measurements. 1,2

actuai mean square position errors for maintained CAF tracks with

mismatched q are shown in Fig 6.9 for the first twenty time steps.

After the first few time steps, there is a clear trend for tracking

error to increase as the assumed value of q deviates further from its

correct value. When V'q is five times or one fifth of its correct

value, the mean square position error after the tenth time step is

approximately ten times that obtained with the correct value of q

6.4.3 Trajectories with deliberate manoeuvres

In this section we investigate the tracking performance of the

filters when the target executes deterministic manoeuvres which do not

obey the filter model. This is a further degree of mismatch between

the assumed and the actual target behaviour. Two types of trajectory

have been simulated, both of which start with a constant velocity

course. The initial position and velocity of the target on entering

the sector is chosen as described in section 6.3. For the first type

of trajectory, the target proceeds on the constant velocity court for

12 seconds after entering the sector, then performs a sinusoidal weave

with half amplitude 1 km and frequency 0.05 Hz, and finally returns to

a constant velocity course after 35 seconds of weaving. For this weave

tho maximum target acceleration is about 10'g' at the extremities of
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the sinusoid. An example of this type of trajectory is shown in

Fig 6.10. For the second type of trajectory, after having travelled

in a straight line for 25 seconds, the target turns in a circular arc

for 15 seconds and then resumes a constant velocity course. The

radius of the arc is 1 km, so that for the mean target speed, the

acceleration whilst turnine is abo-t 9'g'. An example of this type of

trajectory is shown in Fig 6.11.

For these trajectories, the motion of the target switches between

periods of constant velocity motion and periods of high 'g' manoeuvres.

In these circumstances, one would idealiy cmp~uy different target models

for the two phases of the trajectory. For example, if the second order

model were used, q = 0 would be correct for constant velocity motion while

a value of v'q clo-' to the maximum acceleration that can be achisvd by

the target might be appropriate (but not ideal) for periods of

manoeuvre. Usually the filter does not know when the target is going

to execute a manoeuvre and so adaptive tracking schemes have been

suggested. For instance the Interacting Multiple Model (IMM) algorithm

of Blom4 0 ' 5 2 assumes that the target motion may be described by one of

a set of possible models, and that the motion changes abruptly between

these models with some assumed switching probability. This introduces

a further degree of uncertainty into the tracking problem which gives

rise to a large increase in the number of components making up the

mixture distribution of the target state. Houlas and Bar-Shalom14

have applied the IMM algorithm with the PDAF to an example which is

very similar to the sector scan problem. However for the present study

a single target model with fixed parameters has been employed to avoid

the added complication of a multiple model filter.
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One hundred replications of each of the two types of trajectory

have been generated together with measurements with the standard

parameters (see Table 6.1). Figs 6.12 and 6.13 show the percent,2-e

of these tracks maintained by the CAF and the PDAF for different values

of the assumed model noise standard deviation "q- . The correct

measurement parameters a r, a0 and o were supplied to the filters

and as usual the reference error for the track loss criterion was

-2obtained from the Kalman filter with rq = 0.05 km sec- For both

types of trajectory the performance of the PDAF is poor, with the

-2percentage of held tracks rising above 10% only for rq = 0.05 km sec-

For the CAF the best performance is achieved at the higher value of

-2
rq = 0.1 km sec- , for w!aich 97% of weaving tracks and 99% of circling

tracks were held. Note that this value of rq is close to the

maximum acceleration of the targets when they are performing their

manoeuvres. As in the case of second order model trajectories with

mismatched q , the performance of the CAF appears to be less sensitive

than the PDAF to variation of q ; reasonable CAF pertormaný!e being

obtained with Vq- = 0.25 and 0.05 km sec- . It woulu be interesting

to see if use of the IMM algorithm would improve the PDAF performance.

As already indicated, a single value of q is a compromise for

this problem. This is highlighted in Figs 6.14 and 6.15 which show

the mean square position error as a function of the time step for V¢•

set to 0.025, 0.05, 0.1 and 0.25 km sec-2 For maintained tracks, the

minimum error for the initial constant velocity path is obtained for the

smallest value of q , although the minimum tracking error during the

manoeuvre is obtained for ,'qq = 0.1 km sec- Generally for fixed q

the tracking error is greatest during the target manoeuvre, and this is
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error averaged overall tracks. However for the high value of
-2

Vqq = 0.25 km sec , the error for maintained tracks is fairly

constant over the whole trajectory after the initial transient. For
-2

the weaving trajectories with rq = 0.1 km sec (for which the CAY

performs best), it can be seen from Fig 6.14 that the largest CAF

tracking errors occur just after the turning points of the weave, when

the target is pulling maximum 'g'. This is also clear in the tracking

example shown in Fig 6.10.

The average processing time per step and the error statistic E

for these simulations are recorded in Table 6.3. These values are

averaged over all time steps of the trajectories, including periods of

manoeuvre and constant velocity motion. As for the case of mismatched

q with second order model trajectories, the processing time for the

CAF rises with q , at first gently and then steeply for vqq > 0.1 km

-2
sec . This is reflected in the number of mixture components generated

(see Figs 6.12 and 6.13). PDAF computation time also rises with q

-2but does not show the sharp rise of the CAF for vqq > 0.1 km sec-

-2
For Vq . 0.1 km sec , average CAF processing time is three to four

times greater than that of the PDAF.

Since the generated trajectories do not match the filter's target

model and the level of manoeuvre changes in mid-course, we cannot
-2

expect E to be very close to four. However for Vq = 0.1 km sec ,

when the CAF performs best, the values of E for weaving and circular

manoeuving targets are within an order of magnitude of four, which

suggests that this value of q is a reasonable compromise for these

trajectories.
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6.5 Conclusions

The sector scan problem presented in this chapter provides a more

realistic demonstration of the baseline problem. The extended Kalman

filter has been employed to manage the non-linear relationship between

the measurements in polar co-ordinates and the target model in

Cartesian co-ordinates. Essentially the measurement association and

evaluation of the probability weights of the mixture pdf are performed

in polar co-ordinates, while the calculation of the mean and

covariance of each mixture component (the filtering operation) is

performed in Cartesian co-ordinates.

The effect on filter performance of a mismatch between the statistics

of the actual target trajectory and the assumed filter model has been

studied. For trajectories generated by the second order model, CAF

performance is less sensitive to mismatch than the PDAF. Also for the

deterministic manoeuvres, the CAF achieves acceptable performance over

a wider range of filter model parameters than the PDAF. This extra

flexibility of the CAF is due to the filter's ability to retain several

feasible tracks. As might be expected, statistical anlaysis shows that

the filters' internal assessment of tracking error is unreliable if the

filter model is incorrect. Filter assessment is optimistic when the

manoeuvre parameter q is too small and it is pessimistic when q is

too large.
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Table 6.1

PRINCIPAL PROBLEM PARAMETERS FOR THE SECTOR SCAN PROBLEM

Surveillance sector is the region:

X > 0 km , Y > 0 km

and

2km < X +Y2 < 20 km

Second order target model:

Standard deviation of acceleration noise for each co-ordinate is:

-2 ,g,

S= 0.05 km sec - 5 g

Initial target speed (on entering the sector) is drawn from a Gaussian
-1

distribution with mean 0.3 km sec and standard dev-*v"n

-1
0.02 km sec

Initial estimate of target state supplied to filters is a Gaussian

perturbation about the true state. For each Cartesian co-

ordinate, standard deviation of velocity error is 0.03 km sec-

and standard deviation of position error is 0.1 km.

True measurements have a Gaussian range error with standard deviation

a r = 0.03 km and a Gaussian bearing error with a, = 0.01745

radians _ 10.

Probability of detection PD = 1

False measurements are uniformly distributed over the surveillance

sector in polar co-ordinates with density P = 10.0 km radian
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Table 6.3

PROCESSOR TIMINGS AND ERROR STATISTIC E SECTOR SCAN
PROBLEM WITH DETERMINISTIC TRAJECTORIES

Assumed Average cpu
filter time for Error statistics

model Tracks single step
noise held (ins) E

or
V'q lost

-2)
(km sec ) CAF PDAF CAF PDAF

0.010 H 1.31* 0.435* 989.8* 505.6*
L 1.22 0.429 5922.0 7371.0

0.025 H 1.69 0.514 328.0 184.00
L 1.36 0.469 6110.0 5821.70

0.050 H 1.77 0.478 17.95 65.7C
L 1.78 0.645 4075.00 1825.00

Weave
Manoeuvre 0.100 H 2.57 0.512* 2.366 2.752*

L 1.87* 1.140 2372.0* 3.312

0.250 H 113.00 - 0.9630 -

L 221.00 1.580 1.0800 2.430

0.300 H 507.00 - 0.6860 -

L 744.00 1.620 1.4750 2.386

0.025 H 1.48* 0.463* 1.30.6* 41.9*
L 1.38 0.478 19720.0 15230.0

0.050 H 1.70 0.487 56.87 626.7
L 3.73 0.534 7369.00 4899.0

Circular 0.100 H 2.43 0.495* 25.05 15.06*
Arc L 2.11* 1.150 528.2* 12.39
Manoeuvre

0.250 H 101.50 - 4.922 -
L 305.40 1.610 2.932 3.807

0.300 H 307.00 - 2.701 -

L 834.00 1.640 2.554 3.713

* Indicates a small sample (less than five replications)
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* 20.0-

Y (km)

2.0-

0 2.0 X (km) 20.0

Initial target speed mean 0.3 km s-1

standard deviation 0.02 km s-1

Acceleration noise standard deviation

V- =O.05km s- 2 A 5 g

Fig 6.1 A sample of eight target trajectories from the sector scan problem
(note that targets pass through the sector one at a time)



156

20.0-

Y

w~a 
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A SA

a.S .0 15.30

15.52

3 x 20.0

False measurement density p 10km-1 radian-I

Fig 6.2 Average number of false measurements falling within cells
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20.0

Y (kmn)

0 X (kin) 20.0

CAF

POAF

Actual target position 0

Fig 6.3 An example of CAF and PDAF tracking for the sector scan problem
(parameters of Table 6.1)
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20.0 -

Y (km) 0

0 X(km) 20.0

Actual target position 0

True measurements +

Kalman filter

Fig 6.4 An example of tracking with the extended Kalman filter
(parameters of Table 6.1, but p = 0)
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Fin 6.9 Mean square position error for maintained CAF tracks with mismatched q
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C AF
PDAF

Actual target position o

Fig 6.10 An example of tracking a weaving target
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Y (kmr)

0 0

0 X(kn) 20.0

CAF

PDAF

Actual target position 0

Fig 6.11 An example of tracking a target which executes a turning manoeuvre
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Fig 6.14 Mean square posit ion error for a target executing a weaving manoeuvre
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Fig 6.15 Mean square position error for a target executing a turning manoeuvre
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7 THE DATA FUSION PROBLEM

7.1 Introduction

In this chapter the problem of fusing information from a number

of sources is considered. bor the baselle p.oblcm, the only available

data are the position measurements received from a single sensor at

each time step. In many practical cases an imperfect classificatibn of

these position measurements (into true or false categories) may be

available. A simple extension of the baseline filter enables this

classification information to be incorporated into the posterior pdf

of target state (section 7.2). It is also possible that several

independent sensors may be available to supply position measurements at

each time step. Data from each sensor may be incorporated sequentially

(section 7.3), although this may be time consuming. In section 7.4 we

derive a computationally efficient suboptimal filter for combining

information from a primary sensor with measurements from an auxiliary

sensor. In the example considered, the auxiliary sensor gives only

bearing information but does include an imperfect classification of

these measurements. The sub-optimal filter uses the auxiliary measure-

ments to modify only the probability weights of the mixture distribution

after updating from the primary sensor.

7.2 Incorporation of classification data

7.2.1 Problem formulation and solution

The problem here is the same as the baseline case except that with

every measurement an imperfect classification feature d is available.

Thus at some time step k , it is assumed that a set of data (Z, D) is

received, where:
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Z = { j : j 1 ,

and

D : j = 1 , m

(For convenience we shall omit the subscript k throughout this

chapter.) Each classification feature d. is independent of the-J

values of x and Z , although it is known to correspond to measure-

ment j . The value of d. depends only on whether measurement j is
-J

true or false. It is assumed that the pdf of d. conditional on-J

measurement j being true is known, and it is denoted p(d. IT)

Similarly the pdf of d. conditional on measurement j being false is-J

known, and it is denoted p(djIF) . With this knowledge, it is clear

that the data set D may provide useful information as to which, if

any, of the m measurements is the true one. We shall now derive the

Bayesian filter which makes use of the classification features.

Following the reasoning of section 2.3.2, the posterior pdf of x

after incorporation of the latest sensor data (Z, D), may be written:

n m

p(xlZ,D) = j , ( i ZD) Prk.j . (7.1)

i=I j=0

As in section 2.3.2, the explicit dependency on past data 9 has been

omitted. First consider the pdf of x conditional on A!. Since
Ij

the truth or falsehood of each measurement is specified by •j , the

classification data does not contribute any extra information (it is

independentof x), so:
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p( j , Z D) = p(X j , Z)

which is given as usual by equation (2.8). Thus the classification

data only affects the weighting probabilities of the mixture

distribution. By direct analogy with equation (2.10):

p (Z ,D I Y;l ) Pr{''.Y . Pr{ }
Pr •.•j Z,D (7.2)p(Z,D) '"

where *. is a prior hypothesis and Y . is the hypothesis that

measurement j is true. Now since D is independent of Z, and D

depends only on T. ,
J

+,Dýr! )= p(z-i'"!) p(Dl'j)

Hence, comparing with equation (2.10) it can be seen that:

Pr ' Z, D p DD j) Prj ijlZ , (7.3)

where Pr{ I1Z} is the usual probability weighting for the baseline

problem given by equation (2.18), and:

m

p(ýjiT~fl p(ý k!F) for j A 0

Z=1

p(D •j) = m(7.4)

[ 7 F) 
for j = 0
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since the elements of D are independent. Thus dividing through b,,

p(DIP 0 ) , from (7.3) we obtain:

L(d+ ) Pr '.[Z /E if j 0

Pr{ %j!.IZ,D}

where L(d) = p(djT)/p(dýF) is a likelihood ratio and:

E = [Pr{'ojoiZ; + Z L(d) PrýX! j.ZI]

From equation (7.5) it is clear how the classification data may modify

the original probability weightings of the baseline problem through the

likelihood ratio L(d) . As usual, an estimate of x may be obtained

from equation (7.1), and prediction forwards to obtain the prior pdf

at the following time step follows from the state propagation equation

as indicated in section 2.3.3.

A sub-optimal version of the filter described above may be

implemented using the coarse acceptance test and one of the mixture

reduction techniques of Chapter 3. The filter was first reported by

Nagarajan et aZ35 in 1984 and was implemented using the PDAF

approximation. Note that minimal extra computation over that required

for the baseline problem is necessary to incorporate the classification

informat ion.
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The classification feature may also be of the discrete (0, 1)

type, such that:

PTif d = 1

PrjdIT}

1 - PT if d = 0

and

an PF if d =0

Prd - PF if d =

Thus d = 1 indicates that the measurement is likely to be true and

the probability PT of correctly recognizing a true measurement is

known. Similarly d = 0 indicates that the measureurpnt is likely to

be false and the probability PF of recognizing a false measurement is

known. For this discrete case, the likelihood ratio in equation (7.5)

should be replaced by:

L(d) =Prjd~f T -( P) 1 F/(7.6)

Note that if PT = P = j , then L(d) = 1 and in this case, as

expected, the classification feature is ignored and the posterior

probabilities are unaltered. If:

P = 1

S-•mmln u I m ~ T
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and

0 < P F < 1

then

L(0) 0

and

L(1 =u1 - P F)

In this case the classifier always recognizes a true measurement but

sometimes mistakes false for true. So any hypothesis for which d. = 0
3

(j # 0) is given a zero probability weighting via the likelihood ratio.

If PF = 1 and 0 < PT < 1 , then the classifier always recognizes a

false measurement but sometimes mistakes true for false. In this case

the likelihood ratio defined by equation (7.6) is not defined when

d = I and so iý is not valid to divide through by Pr{DIY 0J in

equation (7.3) if any element of D is unity. However each probability

weighting Pr{! jIZ,D1 contains the factor:

Z=1

and if there exists an element of D such that d, = 1 , then

Pr{D+Fjý is non-zero only for j = Z . Thus the true measurement is

identified. Since the classifier always recognizes false measurements

and there is at most one true measurement, only one element of D can

be unity. However if PT is 7ess than one, the true measurement may

not be recognized, so that all elements of D may be zero. In this

case Pr D!Yo is constant for j # 0 . Note that if PF = 1 , the

classifier will pick out the correct hypothesis Y. on 100 PT % of

occasions when the true measurement is present. Thus in a high density
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of false measurements, a perfect false measurement discriminator may

well be more useful than a perfect true measurement discriminator. If

PF = PT = 1 , the correct hypothesis is always identified.

7.2.2 Simulation

To demonstrate the possible improvement in tracking performance

when classification data is available, the baseline example of

section 4.2 has been extended to include a discrete (0, 1) type

discriminator. The problem parameters used in Chapter 4 are retained:

2Lt4

r = I , pr = 0.012 , PD = I

and the performance of the classifier is defined by PT and PF as

indicated above. Mixture reduction is carried out using either the

PDAF or the Clustering Algorithm with NT = 20 .

Fig 7.1 Thows the track survival time NAVE and the average number

of mixture components generated as a function of PT when P. = PT

Also the average computation time per step is recorded in Table 7.1.

As expected, NAVE increases with the probability of correct

classification and useful performance improvement may be obtained even
with a mediocre discriminator. For example with PT = PF = 0.7 , track

lifetime of the CAF is increased by a factor of 2.5, although for the

PDAF substantial improvement is not obtained until PT = PF = 0.8 ,

when the improvement factor for both filters is about 3.4. Also the

average processing time per step (Table 7.1) and the number of mixture

components generated decrease as the performance of the discriminator

improves. This is because the discriminator tends to suppress incorrect
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hypothesis, and this helps to keep the acceptance region small so that

fewer components are generated.

Fig 7.2 shows the effect of varying PT with PF fixed at 0.99,

and Fig 7.3 shows results for varying PF with PT = 0.99 . The

corresponding results for the CAF are similar in these two cases,

although the PDAF performs significantly better for small values of

PT with PF = 0.99 than for small values of PF with PT = 0.99

(see previous section).

In each of Figs 7.1 to 7.3, the CAF track lifetime is always

several times longer than that of the PDAF. However as PF and PT

increase, the difference in performance between the two filters

decreases cjf section 5.2).

7.3 Multiple sensors without classification. data

7.3.1 Problem statement

In this section the baseline problem is extended to multiple

sensors. Each of these has similar characteristics to the sensor

described in Chapter 2 and no classification data is available. It is

assumed that there are NS independent sensors and that at each

time step k , each sensor u produces mu measurements:

Zu = f•uj: j = 1,m

For each sensor u

(i) At most one true measurement is produced with probability

PDu This true measurement is an indpendent sample from the

Gaussian pdf f(z; Hux, )
-- U- J
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(ii) False measurements are uniformly distributed over the

surveillance region of the sensor. The density of false

measurements is p
U

Since each sensor is independent, data from each sensor may be

incorporated sequentially using the update relations of section 2.3.2.

This is convenient since the computer code for the single sensor

problem may be employed with only minor modifications. This recursive

solution is quite straightforward but for completeness it is included

in Appendix E.

In any implementation of the filter it is necessary to control

the proliferation of hypotheses. Depending on the density of false

measurements, it may be feasible to apply a mixture reduction algorithm

only once per time sten, after mPsasrpments from all sensors have been

processed (Fig 7.4b). In this case the order in which sensors are

processed is irrelevant. Alternatively it may be desirable to carry

out reduction afLýr processing measurements from each sensor (Fig 7.4a).

In this case the order in which sensors are processed may affect the

performance of the filter. In the following section, these points are

investigated by simulation for a two sensor filter.

7.3.2 Simulation example: a two sensor filter

To demonstrate the performance benefits that may be obtained with

multiple sensors, the operation of a two sensor filter has been

simulated for the tracking problem of section 4.2. The first sensor

has parameters:

r q~t 4  C.012 D 1I ' c q't 4 qi D1
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so that without sensor 2, the tracking problem would be identical to

the example of Chapter 4. The second sensor is of the same type but

may have different values for the parameters r 2 ' P 2 and PD2 To

facilitate comparison with the single sensor filter, the track loss

criteria are identical to those given in section 4.3 and ara based

solely on sensor 1. Thus track loss through rejection of true

measurements is only tested for sensor 1 and the tracking error

reference is derived from the equivalent Kalman filter based on

sensor 1 only (with pI = 0).

As indicated above, data sets from each sensor are incorporated

sequentially. The two schemes for mixture reduction shown in Fig 7.4

have both been investigated using the Clustering Algorithm (CA) with

the usual thresholds and NT = 20 . Also performance with the PDAF

approximaticn has been studied. The PDAF must be applied directly

after processing each sensor as retention of more than one component

is not possible with this algorithm. This technique for incorporating

multiple sensors using the PDAF has been implemented by Houlhs and

Bar-Shalom14

In the tracking simulation the parameters of sensor 2 were

nominally chosen to have the same values as those of sensor 1 and then

each of the parameters r2 , 02 and P were varied in turn. For
2 D2

reduction via the Clustering Algorithm, the average track survival

times NAVE (for 100 replications) with 95% confidence limits are

shown in Figs 7.5 to 7.7. For each set of parameters, NAVE is shown

for the two sensor filter with reducti-in after processing both sensors

(labelled TB) and with reduction after processing each' sensor

(labelled T12 when sensor I is processed first and labelled T21 when

sensor 2 is processed first). Also results for the single sensor
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filter using only sensoz I (labelled SI) and using only sensor 2

(labelled S2) are shown for comparison. To maintain consistency, the

tracking error reference of the track loss criterion for S2 is derived

from the equivalent Kalman filter based on sensor 1 (with 0).

The average number of mixture components before and after application

of the Clustering Algorithm is also shown in the figures. When the

Clustering Algoithm is applied twice on each time step (for T12 and T21),

both of these applications are included in the averages. Figs 7.8

to 7.10 show similar results for the PDAF approximation, except TB

using the Clustering Algorithm has been included for comparison.

Average cpu time per time step is given in Table 7.2 for all of these

results.

In many cases, employing two sensors gives an increase in track

lifetime NAVE with respect to a filter using measurements from only

one of the two sensors. The greatest improvement factor is obtained

when the two sensors are identical, for which NAVE from TB exceeds

N AV from the single sensor CAF by a factor of about 8.5. When there

is a large discrepancy between the quality of the two sensors, the

performance of the two sensor filters does not usually differ

significantly from the best of the single sensor filters. However

in two cases where the track lifetime of S2 is greater than 15 times

that of Si (C) = 0.001/qit 4 and ý32 = 0.002/q-t4 in Figs 7.6 and 79),

the two sensor filter T12 is outperformed by S2 for both the CAP and

the PDAF. In each of these two cases, TB using the Clustering

Al•orithm is still better than the CAF using sensor 2 a Thus

it appears that when the quality of the two sensors is very dissimilar,

it I., Important to retain tho detailed structure oi the mixture between

Sein.' J~ta fr&r the sensors. Presumablv this allows the aocu
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sensor to selectively reinforce or suppress componants generated by the

poor sensor.

In all cases track lifetime for TB is greater than or not

significantly different from NAVE for T12 or T21, for the Clustering

Algorithm. Also TB w.'hich uses the Clustering AlgoriL:m, always gives

a track lifetime at least five times longer than that of T12 or T21

using the PDAF. For both the CAF and the PDAF, NAVE from T12 is

usually similar to NAVE from T21. When a significant difference

does occur, the longer track survival time is usually obtained whenl the

better sensor is processed first. The one exception to this is for the

CAF with r 2 = 0.01 q~t4 (Fig 7.5).

For the Clustering Algorithm, the average cpu time per step for

the two sensor filters is almost always much less than that of the CAF

employing only the poor sensor, and greater than the CAF cmploying only

the good sensor (see Table 7.2). For identical sensors, the cpu time

per step for TB is 16% greater than that of the single sensor CAF,

while T12 and T21 give a 25% saving in cpu time. These computation

times are closely related to the average number of mixture components

generated by the filters. The effect on cpu time of incorporating a

second sensor is broadly similar for the PDAF approximation, except

that for PD 2 < 1 , the two sensor filters are slower than the PP'Y

using sensor 2 alone (which performs very poorly).

It should be remembered that the above observations only apply

to the example simulated here. However it is quite likely that the

broad conclusions apply to a wide range of examples. Detailed results,

such as the percentage of cpu time saved by employing two identical

sensors rather than one of them, are likely to be problem dependent.
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7.4 Incorporation of data from an auxiliary sensor with a
classification capability

7.4.1 Problem statement

This data fusion example has been chosen to show how data from a

secondary or auxiliary sensor may be used to assist a primary sensor

with modest changes to the tracking filter. This example is an

extension of the sector surveillance problem of Chapter 6, and as

already described it is assumed that the primary sensor produces

measurements in polar co-ordinates. The auxiliary sensor produces

bearing only measurements, but a classification flag is associated with

each of these. Since the auxiliary sensor does not supply range, on its

own it would give poor tracking performance. The auxiliary sensor is

co-located with the primary sensor at the origin and measurement sets

are produced coincidently by both sensors. It can be seen that this

problem includes elements from each of the previous sections.

The auxiliary sensor produces false measurements which are

uniformly distributed in bearing over the surveillance sector with a

density -2 per radian. A true measurement has a Gaussian distribution

about the actual target bearing with a standard deviation of c2

radians, and the probability of detecting the target is P D2. The

classification flaQ associated with each measurement is of the discrete

(0, 1) type. A value of one indicate- that the measurement has been

classified true, while zero indicates that it has been classified false.

The probability of correctly recognizing a true measurement is PT )

and PF is the probability of correctly recognizing a false measuremen..

As in section 7.2, the classification flag is independent of the value

31 th& measurement.



7.4.2 A sub-optimal filter

The main idea behind the design of this filter is to use data

from tle auxiliary sensor to modify only the probability weights of the

mixture distribution resulting from the primary sensor measurements.

So the auxiliary sensor data is to be used either to reinforce cr to

weaken the weightings of the mixture components. The mixture components

themselves are not changed. This approach avoids the usual splitting

of components when measurements from the second sensor are incorporated.

After processing the measurements ZI from the primary sensor at

some time step, the posterior pdf of x is given by (following

section 2.3.2):

n m1

pxZ) Pr jZ Z ~ 1  ri 1 , < 1)
i=1 j=0

....... (7.7)

where 7,1  is a hypothesis on the measurements from the primary sensor

(see Appendix E). Since the sensor measurements are in polar co-

ordinates, the extended Kalman filter approximation is used to evaluate

the components ana .oility weights of this Gaussian mixture (see

section 6.1). The data from the auxiliary sensor is denoted:

(Z2 . D")

where Do is the set of (0, 1) t;pe classification featurts:
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D = {d 2 z : Z. - 1, m2ý

After incorporating data from the auxiliary sensor, the posterior pdf

of x becomes:

n ml1 m 2

P(KIZ 1'Z2 D 2) =Z Z Z P(-'j2-'riZ'2
i=1 j=0 Z=O

SPD2 (7.8)

where 2Z is a hypothesis on the mpnsurements from the auxiliary

sensor. (Note that D2 is not required in first term on the RHS of

equation (7.8) - see section 7.2.1.) We now impose the simplifying

assumption that the effect of the auxiliary sensor measurements Z2

on the components of the mixture (7.7) can be ignored, ie:

P(x'1'1j,22£,*iZIZ2) :ý- P(XL1 lj,•i,1 Z 1)

In this case equation (7.8) may be written:

n m1

P(xLZIZ 2 ,D2 ) Z P(xS!Ij,=,ZI) PrIjil IjZ2,z D2

i=1 j=0

....... (7.9)
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m2

where Pr{k "i Z1 Z2 D 2 Z~ Pr 1jy"'2Z' ' ZIZ' D J

Z=0

After applying Bayes theorem and deleting redundant dependencies it can

be shown that:

m 2

Z=0

where F.. E

. ....... (7.11)

and E is the normalizing denominator chosen so that the summation of

the RHS of equation (7.10) over i and j is unity. (Note that D2

is independent of the past, so Pr{D2 1P2 Zj does not include a

dependency on jri .) Thus the resulting filter is the same as the

usual single sensor filter except that each probability weighting is

modified by the factor:

m 2

Z F ijZ

Z=0

For the problem of section 7.4.1, the auxiliary sensor data

consists of bearing measurements, each with an associated classification
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flag. Thus using an amalgam of results from sections 2.3.2, 6.1, 7.2.1

and Appendix E it can be shown that equation (7.11) is given by:

F 
2( (I - P 

_T)_1-d_2Z_02 

if

PTF P F 2• Zij oij

E ' i f # 0

F ijZ -

(1 - PD2) "2 
if 0P D2 ET'

S...... (7.12)

where E' is the normalizing denominator, chosen so that:

n m I m 2

Z Z Pr {Y1."-YilZ 1 ý Z F.. = 1.
i=1 j=0  Z=0

Also 6 2 is the auxiliary bearing measurement Z. 6ij is the

expected value of the true auxiliary measurement under hypothesis

(',lj' JK i ), and it is given by:

6ij =tan-'(9ij/xij)

where (xi.,, q..) is the mean target position of the mixture component

2
of equation (7.7) corresponding to hypothesis (Qlj, ".)" oi. is the

variance oI the innovation (92Z - eij ) under hypothesis ( J) and

from equations (6.5) and (6.6) it is given by:
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2 1( sni 2 - +2 - sin 2g) + 2•ij -2 ii sn 1 P33 " j P13 ij 2

riJ

-2 ^2 ^2
where r. = xij + ij

and p 1 1 ' P 3 3  and P1 3  are elements of the symmetric matrix P..

which is the covariance of the mixture component of (7.7)

corresponding to hypothesis (plj', r i'). If aij is large, then there

is likely to be a large uncertainty in the association of auxiliary

measurement to mixture component, and the extra data is unlikely to be

informative. However if o.. is small so that the Gaussian factor in

equation (7.12) is selective, the auxiliary data may provide useful

extra information.

From above it can be seen that certain elements of the mean x.-ii

and the covariance P.. of each component of equation (7.7) areIi

required for the evaluation of Fi. . These terms are already

available for an implementation using the Clustering Algorithm, so

that incorporating the auxiliary sensor daLa is a small computational

overhead. However, for the standard PDAF, i.. and P.. are not

explicitly evaluated and so for this filter the extra computation requirement

is significant. To reduce the processor load for the PDAF it is

suggested that components with very low probability weights are

discarded before calculating the modifying factor:

m 2

E Fi

1=0



188

In the simulation of the following section, components with

probability weights below 0.001 are ignored for the PDAF. Also for

both the CAF and the PDAF, an acceptance test is applied to the

auxiliary measurements for each component of equation (7.7). Mixture

reduction is applied after modifying the probability weights, and

prediction forwards to the next time step follows as usual from the

state propagation equation.

7.4.3 Simulation

Sim-lation studies have been carried out to demonstrate the

possible improvement in tracking performance through sub-optimal

processing of auxiliary sensor mfas-rements. The standard parameters

of Table 6.1 have been assumed for the target trajectory and for the

primary sensor, except that the density of false measurements for the

primary sensor has been increased to p = 30 km rad The

performance of the auxiliary sensor is described by five parameters:

(i) the standard deviation of the true measurement bearing

error c2 (radians),

(ii) the density of false measurements p2  (radians-)1

(iii) the probability of correctly recognizing a true

measurement PT '

(iv) the probability of correctly recognizing a false

measurement PF

(v) the probability of detecting the target PD2

For this simulation we have set PT = PF 9 and the following standard

set of parameters for the auxiliary sensor has been chcsen:
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0 2 = 0.01745 rad

Pr2 = 45 rad
1

PT = PF 0.9

PD2 1

Thus the standard deviation of the true measurement c2 is the same

as o for the primary sensor, and P2  is related to the density of

primary sensor false measurements by:

= 1 p(r 2 - r1)

where r 2 - r 1 = 18 km is the range extent of the surveillance sector.

Each of the parameters a2' P 2 and PT has been varied in turn while

keeping the parameters of the primary sensor fixed. Figs 7.11 to 7.13

show the percentage of tracks maintained by the Auxiliary Sensor filter

out of 100 replications for each set of parameters tested. For the

track maintenance criterion of (6.1), a and a arex y

obtained from the equivalent Kalman filter based on the primary sensor

only. The average processing time for a single step and the error

statistic E (see section 6.3.1) are given in Table 7.3.

Figs 7.11 to 7.13 clearly show that the Auxiliary Sensor filter

can give a significant performance improvement over the primary sensor

alone. This is most apparent for the PDAF which can only retain 1% of

the tracks without the auxiliary sensor. As would be expected,

performance deteriorates with increasing a2 and p 2 P so as these

parameters becowti large, performance approaches the primary sensor alone

case (Figs 7.11 and 7.12). Also filter performance improves a3 PT

increases (Fig 7.13). For the case PT = PF = 0.5 , the classifier

= rm, mommm ~ m mmmm m m m mT- F
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supplies no useful information. However for PT = PF = 1 , the true

auxiliary measurement is always identified so that the presence of false

auxiliary measurements is irrelevant (cf filter performance for

-1
P2 = 0.36 rad in Fig 7.12 for which false measurements are sparse).

Table 7.3 shows that if the performance of the auxiliary sensor

is good (02 or p2 low, or PT high), the incorporation of the extra

data reduces the average computacion time for the CAF: the extra

information enables the filter to reduce the number of retained

components (see Figs 7.11 to 7.13). Processing time is always greater

for the Auxiliary Sensor PDAF than for the standard single sensor PDAF.

This is because the mean and covariance of each mixture component must

be explicity calculated for the Auxiliary Sensor PDAF implementation

(see previous section). When the density o2 of the auxiliary false

measurements is large, the processing times for the Auxiliary Sensor

filter, are several times greater than those of the standar filters.

Examination of the error statistic F in Table 6.3 show. that

for lost tracks, the filters significantly underestimate their tracking

error (a. is also the case for the standard filters, see section 6.3.1).

For CAF held tracks, with the exception of the cases c2 = 0.005 rad

and c, = 0.04 rad , E is always within 50% of the 'correct' value

of four. However for the PDAF, the values of E show a much greater

cpread about four, with a tendency for E to increase with the

pezformance of the auxiliary sensor.

7.5 Conclusions

In this chapter we have shown how Bayesian filters may be applied

to the data fusion problem. Incorporating data from an extra sensor or

an imperfect measurement classifier may significantly improve tracking
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performance and reduce processing time. However if the performance of

the additional sensor is very inferior to the original sensor, a large

processing overhead may result in only a minor performance improvement.

-.. . .--- - -" -
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Table 7.1

PROCESSOR TIMINGS FOR FILTERS
WITH CLASSIFICATION FLAG

Average cpu
Classification time for

parameters single step
(ms)

PT PF CAF PDAF

0.50 0.50 5.930 1.120

0.60 0.60 5.420 1.140

0.70 0.70 3.710 0.659

0.80 0.80 2.210 0.460

0.90 0.90 1.070 0.206

0.95 0.95 0.675 0.199

0.99 0.99 0.519 0.195

0.30 0.99 3.240 0.379

0.50 0.99 1.920 0.236

0.90 0.99 0,679 0.199

0.95 0.99 ').594 0.196

0.99 0.30 3.240 0.813

0.99 0.50 2.010 0.613

0.99 0.90 0.677 0.198

0.9 0.95 0.581 0.197

.. . . i ilii lliillii____H [i
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iabie 7./

PROCESSOR TIMINGS AND ERROR STATISTIC E FOR AUXILIARY SENSOR FILTER

Parameters of Tracks Average cpu Error statistic

auxiliary sensor held time for single

02 P 2  or step (ms)

(rad rad-I) PT = PF lost CAF PDAF CAF PDAF

H 15.00 1.13* 3.660 3.142*Primary sensor only L 52.80 2.72 2081.000 6.694

0.005 45.00 0.9 H 9.11 2.93 22.930 16.490
L 9.33 3.66 2779.000 566.600

0.01 H 10.00 2.94 4.262 71.080
L 9.57 3.95 2419.000 444.100

0.01745 H 11.50 3.85 3.691 27.560

L 11.50 4.96 1713.000 258.400

U.04 H 14.50 5.73 435.420 5.581
L 14.60 7.37 1742.000 88.180

0.07 H 16.90 8.32 3.558 4.346
L 22.80 9.61 3069.000 128.300

0.1 H 18.60 5.93 3.601 4.204
L 22.70 12.60 2784.000 69.230

0.2 H 21.25 10.37* 3.643 3.339*
L 64.22 19.22 2159.000 71.820

0.01745 0.36 0.9 H 8.54 1.95 6.106 17.490
L 7.72 2.34 1377.000 39.650

0.01745 1.80 H 8.64 1.97 3.718 18.240
L 8.27 2.41 1344.000 199.300

0.01745 9.00 H 9.20 2.23 3.707 10.650
L 9.52 2.67 6627.000 422.200

0 01745 45.00 H 11.50 3.85 3.691 27.560
L 11.50 4.96 1713.000 258.400

0.01745 180.00 H 19.00 10.30 3.590 2.711
L 20.90 18.60 2362.000 95.980

0.01745 720.00 H 44.40 23.90 3.927 2.678
L 126.00 74.00 2522.000 96.390

0.01745 1440.00 H 76.20 68.50 3.749 21.140
L 79.40 145.00 2495.000 155.400
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Table 7.3 (concluded)

Parameters cf Tracks Average cpu Error statistic

auxilliary sensor held time for single
he2d 2or step (ms)

c12 P2 or

(rad) (rad- 1 ) FT = PF lost CAF PDAF CAF PDAF

0.01745 45.0 0.5 H 15.00 4.44 4.437 2.408
L 21.60 9.19 9.188 41.770

0.6 H 16.70 4.41 3.585 2.383
L 18.10 9.08 3012.000 23.730

0.7 H 14.20 5.69 3.607 3.677

L 15.00 8.10 6104.000 41.760

0.8 H 12.90 4.09 3.585 2.761
L 14.70 6.79 2896.000 190.900

0.9 H 11.50 3.85 3.691 27.560
L 11.50 4.96 1713.000 258.400

0.95 H 10.70 3.17 3.745 31.050
L 10.50 4.22 2183.000 201.500

0.99 H 9.87 2.89 3.711 16.210
L 9.55 3.70 1622.000 204.000

1.0 H 9.48 2.76 3.836 20.030

L 9.92 3.31 3709.000 388.900

* Indicates a small sample (less than five replications)
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8 MULTIPLE MEASUREMENT CLASSES: THE PROBLEM OF INTERFERING
MEASUREMENTS

8., Introduction

In the preceding chapters it has been assumed that measurements

are either true or false, and that at most one of the measurements from

a single sensor may be true at any time step. The problem is now

extended to allow further classes of measurement which may or may not

be associated with the target. The formal Bayesian solution to this

new problem, which is given in the following section, is a straightforward

extension of the baseline filter. However, except for simple cases,

it is not easy to apply this general solution to derive practical

filters for specific tracking examples. Thus to arrive at useful

recursive filters it may be necessary to impose rather crude approxi-

mations.

In section 8.3 a tracking problem with three measurement classes

is described. Two of these classes are the usual true and false

measurements, while the third class consists of interfering measurements

associated with the target position. As an extra complication this

interference is intermittent and its switching on and off may be

modelled by a Markov process. A practical sub-optimal tracking filter

has been derived from the general solution of section 8.2 by making

several approximations.

8.2 Problem formulation and general solution

At each time step a set of measurements Z is received:

Z = {zi : i = I , m}
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Each measurement z of Z may belong to any one of N classes, and

the class membership of z may be unknown. However if z does belong

to class C. , then z is an independent sample from the pdf:

Cj

c.),(.1

which is assumed to be available. It is also assumed that the

probability distribution of the number of received measurements from

each class is given. Thus the probability of receiving m: measure-J

ments belonging to class j is known and is denoted gj(m!) . Note

however that m! is in general not known and that the membership ofJ

each class may only be hypothesized. Clearly:

Nc

M! = m
j=1

As usual the state propagation equation is given by equation (2.1) and

the problem is to obtain the posterior pdf of x at each time step.

To solve this problem, following section 2.3.2, it is necessary

to construct all feasible measurement association hypotheses A' and

so to evaluate the posterior pdf of x:

p X-Z) p(xlW',Z) Pr Z (8.2)

Al ly"'

(The time step subscript k and explicit dependency on Yk are omitted

in the chapter, although the conditioning should be understood throughout.)



212

This equation is similar to equation (2.19) and as usual:

S= ,~ t~

is a joint hypothesis, where JK is a hypothesis on the class member-

ship of data received up to and including the previous time step, and

T is an association hypothesis on the current measurement set Z

Also we assume that Pr{ Pr} and p(xl,4') are available from the

previous recursion.

First consider p(xJA',Z) From Bayes theorem:

p(Z1Lx,9/t) pWJP"•)

p (x • ',Z) = P(Zl ') . (8.3)

Suppose that T assigns the ith member of Z to class C , then

since the members of Z are independent:

m

p(Zjx, 6 ]") = ][ P(zixCf(i)) (8.4)

i=1

Also

p(x I/') = (xIJ)

which is available from the previous recursion. The denominator of the

RHS of equation (8.3) is given by:

Jp(Zlx,,*') p(xI,*') dx (8.5)

Thus in principle p(xiK"t ,Z) can be found. In practice it is likely

to be difficult to find a simple analytical expression unless the
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underlying distributions are Gaussian or the measurements are

independent of x for many classes (as in the baseline problem).

Now consider the posterior probability:

Pr 'W' I Iz = Pr{or, TI z

This is given by equation (2.10):

Pr•w{ZI = p(ZI,',') PriTIJPlY Prtl (.6

= p(IY") p(Z) (8.6)

Since the members of Z are independent, following equation (2.11) we

have:

pzt p (fp(zLx, Y) p(x!JP) dx

m

17 P(ý i Lc, f(i ))p(x 1-) dx . (8.7)

The factor Pr{\Y),) is the prior probability of T , and since this

is independent of hypotheses on data from previous time steps:

Pr= Pr 14'

The evaluation of this probability depends on what prior information is

available on the class membership of the measurements Z . However it

is known that the probability of receiving m' measurements belonging
J

to class C. is gj(m!) . Thus the joint prior probability that m'
J J 3

measurements belong to class C. for j = 1 , ... , N is:j c
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Nc

j=1

N
C

where Zm! = m
1=1

If there are no prior restrictions on the class membership of measure-

ments, then the number of hypotheses T that could have caused this

distribution of measurements is:

m!
in1 • m2 .... mlN.

c

So, since a priori each of these hypotheses is equally probable:

M Nc

Prj = m! c gjM! (8.8)

j=1

where m! is the number of measurements assigned to class C. underJ j

hypothesis T . If the class membership of the measurements is restricted,

there may be fewer hypotheses corresponding to this distribution of

measurements, in which case equation (8.8) must be amended. The final

factor Pr{r*l is available from the previous recursion, and the

denominator of equation (8.6) is given by:
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p (Z) = p(Zj-','P") PrhIf Pr(' . (8.9)

All All

Thus again all the required functions are available and in principle

the required solution may be obtained by substituting into equation (8.6).

The prediction forwards to obtain the prior pdf at the following time

step follows from the propagation equation of the state vector, as

indicated in section 2.3.3.

To show that this general solution may be reduced to the baseline

problem, suppose that there are only two classes of measurements, true

and false. At most one of the measurements may be true (class CI) and

the probability distribution of the number of true measurements is given

by:

PD- (I - PD)I I for mI' = 0 or 1

91(m•)

0 otherwise

....... (8.10)

Also from equation (2.2), a true measurement is a Gaussian distribution

about lix

p(zx,C1 ) = j$'(z;HIx,R) (8.11)

False measurements (class C,) are uniformly distributed and are

independent of x
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p(zlxC 2 ) = V- 8.12)

where V is the volume of the sensor surveillance region. The

probability of receiving m2 false measurements is given by a

Poisson distribution:

(1 PV vm 2

g2(m') = e (pV) /m2 for m2 >, 0 (8.13)

As described in section 2.3.2, the hypothesis T. , for j # 0 , indicatesJ

that mI 1 and m' = m-1 . So from equation (8.8), for j # 0

Pr Yj - (m g 1(1)g2(m- 1)

m g1 (1)g 2 (m - 1) (8.14)

If j = 0 , then mi' = 0 and m' = m , so from equation (8.8):
1 2

Pr 0 ý m . g (0)g 2 ( m)

= g1 (0)g 2 (m) (8.15)

By substituting equations (8.10) to (8.15) into the general solution

given above, the solution of the baseline problem given in Chapter 2

may be obtained.
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8.3 The sector scan problem with intermittent interference

8.3.1 Problem statement

In this extension of the sector scan problem (see section 6.2)

interfering measurements may occur behind the target, when viewed from

the sensor position at the origin. If the target position is (r, !),

then interfering measurements may occur in the region (see Fig 8.1):

r < range < r + rI

e -eI < bearing < e + (1

These measurements are uniformly distributed in polar co-ordinates at a
-1 -1

density of pI km radians , however they only occur within the

surveillance sector. The switching on and off of the interference is a

Markov process. Thus if the interference were present at time step k

the probability that it would be present at time step k + 1 is p 1 1

and the probability that it would not be present is p 0 = 1 - p 1 1

Likewise the probability that there is no interference at time step

k + 1 given there is none at time step k is p. , while the

probability of a transition from off to on is p 0 1

In this example it is assumed that the parameters rip el, Pip P11

and p0 0 are all known and that interference is not present as the

target enters the surveillance sector. Only one sensor is present at

the origin and no classification information is available to distinguish

between the true measurement, the interfering measurements and the

usual false measurements.
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The problem of estimating the 6tate of abruptly changing systems

has received considerable attention (see, for example, Tugnait 42

43 45 52
Tugnait and Haddad , Weiss et aZ and Bolm ). As noted in

section 6.4.3, abrupt target manoeuvres have been represented by

allowing the equations of target motion to switch between different

models. In this interference switching problem the target model is

fixed, but the measurement environment may change suddenly according

to the switching probabilities p 10 and p 01 * It is quite straight-

forward to incorporate this possible switching within the usual

Bayesian framework, and this part of the solution (section 8.3.2.1) is

similar to the development in the above references. However the updaýing

of probabilities and pdfs on the assumption that interference is present

is a new problem. We shall introduce approximations which allow a

practical sub-optimal filter to be derived from the optimal solution.

8.3.2 Problem solution

8.3.2.1 Representation of intermittency

For this problem we have the measurement - class association

hypothesis ý to consider as described in section 8.2, but in addition

there is the uncertainty of whether or not interference is present. We

introduce a variable Y which takes the value 1 if interference is

present and 0 if it is not. This indicator only applies to the current

set of measurements, previous hypotheses on the presence of interference

being included in -4'-. Equation (8.2) which gives the posterior pdf

of x should be extended to:

1

P(X Z) p (x Z) Pr z (8.17)

All
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where •' = (',•) From Bayes rule, the corresponding version of

equation (8.6) is:

p p(ZWy,, ) Prj<y,•1 PrIy -;V'I Prl . 1
p(Z) (8.18)

In this expression the factor Pr{yI•' is given by the switching

probabilities pij . So for instance, if under K interference were

present at the previous time step and if y = 0 , then:

Priy(O} = P 1 0

The other factors in expressions (8.17) and (8.18) are given by other

equations in section 8.2.

8.3.2.2 The likelihood of a set of measurements: p(Zix,y,y)

A key step in the solution of this problem is the elaluation of the

likelihood p(ZLx,y,4) . The hypothesis Y assigns each member of Z

to one of three classes. We define class 1 to be true measurements,

class 2 to be the interfering measurements and class 3 to be the usual

false measurements. If y = 0 , none of the measurements belong to

class 2. For classes I and 3, we have as usual:

P(z'ý,C 1 ) =-1(z;h(x),R)

and

P(KxC) = V

where V is the volume of the surveillance region. For class 2:
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+!zXC) [H(r - r) - Hr - (r +r

X[H(8e - (e - eD)) - Hm- (e + eI ))j /2e Iri

where H(.) is the Heavyside function,

(r,e) is the target position in polar co-ordinates, and:

Irm

z = em

The pdf takes this form because class 2 measurements cannot lie outside

the interference region (which is assumed to be within the surveillance

region for this expression).

Suppose that under hypothesis T for the measurements received at

a particular time step, measurement t belongs to class 1, m2  measure-

ments with subscripts from the set 1E2 belong to class 2 and the m'

remaining measurement belong to class 3. In this case the likelihood

of the recieved measurements Z is given by (from equation (8.4)):

_ !

p(Zlx.y Y) = Vm3 '(zt;h(x),R) F1 p(zilx,c 2 )

If none of the measurements is true, the factor -f1(z t;h(x),R) is

omitted. By considering the factors in the product of the class 2 terms it

it can be seen that:
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0, if rMX - rMN > rI or eMX - 6 MN > 21

7 p(_ziIx,C 2 )= [H(r - rMX + rl) - H(r - rMN)]

[uH e + eI) - H(6 - e,- e,)1(-21r)m

otherwise

. ....... (8.19)

where rMX and rMN are the maximum and minimum range

measurements in class 2, and 6MX and 6MN are the maximum and

minimum bearing measurements in class 2. Note that expression (8.19)

is sensible because if two measurements allocated to class 2 by Y are

separated in range by more than rI or in bearing by more than 2e,

the hypothesis must be false. If this is not so, the extreme class 2

measurements restrict the possible target position under T to the

rectangle in r,0 space shown in Fig 8.2. This is equivalent to a

region A in x,y space, and for convenience we shall define the

function:

0, if m2' > 0 and x 2+ y2 > r 2

or x + y < rMX - r) or tan (y/x) > MN +61

UA(X) = or tan- 1 (y/x) < 6MX - e I

0, if A does not exist but m, > 0

1, otherwise (including the case m2 = 0)
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Thus the required likelihood of the measurements Z is given by:

_4/-(Et;h(x) R) if m;

p(Z'xýy'Y') = V (Te r1) 2, U A(x)

1 if m; 0

....... (8.20)

8.3.2.3 First approximation: the prior pdf p(xlr') is

Gaussian

Having found this likelihood we may proceed with the solution via

equations (8.3) and (8.18). However to arrive at a practical filter

it will be necessary to make a number of simplifying assumptions so

that the resulting filter is sub-optimal. The first approximation is

that the prior pdf p(xlr') in equation (8.3) is Gaussian:

p (x ,

where i refers to the hypothesis •. As will be seen from

equation (8.22) below, this is incorrect, but it allows us to write:

'P ;h - ( .1
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where we have made use of the extended Kalman filter approximation

(see section 6.2). Thus, using the above result with (8.20)

in equation (8.3), we obtain:

UA(x)+(x;.it,Pit)/F1 if mI = 1

p l,~,) =
p (X I o Z

U A tixI if m' 0

........ (8.22)

where F = Pi(X)t(x;iPt)dx and F is similar. The function

UA(x) effectively truncates the Gaussian in (8.22), so that the

uncertainty in the va!ue of x is reduced by the information from the

class 2 measurements. Unfortunately the integrals F1 and F2 of the

Caussian over the region A cannot be evaluated analytically.

However if (Rit' it) were well inside A and the corresponding

standard deviations from Pit were small compared with the dimensions

of A , the effect of UA (x) in equation (8.22) could be ignored.

Now consider the posterior probability of hypothesis (y,5"),

given by equation (8.18). The probability of receiving m' interfering

class 2 measurements is given by a Poisson distribution with mean

PlVI I where VI = 2eTrI is the volume of the interference region.

Similarly the probability of receiving mý false measurements is given

by a Poisson distribution with mean pV , where V is the volume of the

surveillance region. Thus from equation (8.8):
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-PIVI mt

m (epr= ,¢ PDI (i . -PV(pv)m3

,if y = 0

....... (8.23)

Also using (8.20) and (8.21) with equation (8.7), we have:

V3 V 1 2 ý 'ý~ RJSf -4'(L;ki'pi)d

if mtn = 1

p (ZIyc) =

V V I fUA(x) (x;xiM.)dx

if mi = 0

....... (8.24)

Inserting (8.23) and (8.24) into (8.18) we obtain:

P D e-PV 0 m;3•(zt;h(x--i)Si) Prjyjjrý Prý,,-flý

e PII p1 fUA(X)i(X;1 x tPit dx, if y = 1

x/E

J 1 , if y = 0

Pr ,. 4 =z

if m' = 1
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Pr Z (1 - ~D)e' p 3Pr{) !'#ý Pr(

e P I t XV f ) / iMid if y 1

X/E

,if y 0

if m, = 0

....... (8.25)

where E is the normalizing denominator which is chosen so that:

1

Z • Pr{y,•?"Z} = 1

y=O All

Thus in principle, the posterior pdf of x may be obtained by

substituting (8.22) and (8.25) into (8.17) and summing over all

feasible hypotheses. The main difficulties here are that an integral

of the form:

fU A(X 0s~; Rit, Pit) dx

must be evaluated for every hypothesis with y = 1 and that there are

a very large number of feasible hypotheses. In fact, if m measurements

are received and if y = 1 , the number of feasible hypotheses T con-

cerning the class membership of measurements is (2 + m) 2 m-1 This

figure is very large even for modest values of m : for m = 20 there

are over 107 measurement association hypotheses. So, to derive a

practical filter further simplifying approximations must be introduced.
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8.3.2.4 Further approximations to derive a practical filter

Firstly we shall ignore the contribution of the class 2 measure-

ments in the expression for p(x!y,5ý"',Z) . Thus equation (8.22)

becomes:

Sif m = I

x; if m; 0

....... (8.26)

(This is the same sort of approximation as made in the deviation of the

Auxiliary Sensor filter (see section 7.4.2).) Thus information from the

class 2 measurements is only taken into account via the probabilities

Prly,4'IZI .Clearly some potentially valuable information is being

discarded here, however it does allow a useful simplification of

equation (8.17) (and it ensures that the prior pdf p(x_'ýP?) is

Gaussian). Let us write the measurement association hypothesis Y as

the pair:

U4, (,A) ,

where -, indicates the choice of true measurement (class 1) and A

specifies the partition of the remaining measurements between

classes 2 and 3. From (8.26) it can be seen that p(x y,i"',Z) is

independent of A , so that equation (8.17) may be written:
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= Z Z Z p(x~y,Q,jPZ) Pr{YQ, 2~Z~ (8.27)
y=O All All

where p(xly,Q,•,Z) is given by equation (8.26)

and

Pr~ ~ ýyI J Z Prjy,£2,A,a'IZ} (8.28)

All
A

The usual acceptance test may be employed to make a short list of 2

hypotheses for each hypothesis V'.

We now introduce the last approximation which allows us to perform

the summation over all A in equation (8.28). It is assumed, onZy for

the integrals in equation (8.25), that:

R ~ it P t))(

and (8.29)

Thus the uncertainty in the value of x represented by Pit or M.

under the hypothesis (P4,JP) is ignored. It is recognized that this

contradicts the first assumption given by equation (8.26), and although

this is unsatisfactory, it does enable a practical filter to be derived.

Consider the probability Pr1y,2,A,,%'IZt given by equatioT. (8.25)

in the light of assumption (8.29). With this assumption, for y = 1 1

the interference region is known precisely under hypothesis (P.,j).
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Thus if all of the measurements associated with class 2 by hypothesis

A are in this region, then the integral in (8.25) is unity.

Otherwise the integral is zero, so that the probability of this

hypothesis is zero. So, from (8.25):

e m0 3 e I 2l 1 Pr{ •} Pr{•1

t ;h( Ji, Si), if m' = 1

1 P if m' = 0

if y 1 and if under A , all of the m'

class 2 measurements are within the interference

region defined by 0

Pr y'{Y,A,7Z1f =•

e-_V rm pr{PLr 1 Pr{•

P -k^t;hi'S if mI

x /E
1 - D if m1 =0

if y = 0.

0, otherwise.

....... (8.30)



229

Now if y = 0 , then all measurements apart from the true

measurement belong to class 3, ie if y = 0 , for each (2,5) there is

only one hypothesis A . So if y = 0 , there is only one term in the

summation of equation (8.28) and Pr~y,f2,jflZj is given directly by

equation (8.30). However if y = 1 , then for each (2,gt'), the number

of feasible hypotheses A is equal to the number of ways of partitioning

the measurements in the interference region between classes 2 and 3.

Suppose that with y = 1 , under hypothesis (ýI,Jf), mI measurements

fall within the interference region. If m2 of these measurements belong

to class 2, then there are exactly (,) ways of partitioning the m,( m 2

measurements between classes 2 and 3. Since the measurements outside

the interference region all belong to class 3 (excluding the true

measurement), there are exactly f feasible hypotheses A for

which m' measurements belong to class 2. The probability of each of
2

these hypotheses is the same and it is given by (8.30). Also

since m2 may take any value between 0 and mI , for y = 1 the

summation (8.28) may be evaluated using equation (8.30) and the

identity:

m
2 1LI.ml) 2 2 -m (0 +1m

m21=0 ml 10

Thus the probability Prjy,a2,JfZj may be written (absorbing some

common factors into the normalizing denominator):



230

mI
e+ 0) e Pr(yK•/} Pr{I}

P I ;htxA)S.i, i f m'

X /E

(1PD>P3 if m = 0

if y 1

Pr{Y,•,1 *"fz} =<

(I /Epi m

if y = 0

....... (8.31)

where the normalizing denominator E is chosen so that:

Z Z Z Pr{YJ2f•IZ = I

y-O All All

By applying these approximations, the number of hypotheses that

must be explicitly considered has been reduced to a feasible number,

provided that the usual acceptance test and mixture reduction algorithm
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are employed. The posterior probabilities for the feasible hypotheses

are simple modifications to those of the baseline problem given by

equation (2.18). To evaluate the main modifying factor for y = 1

it is only necessary to count the number mI of measurements falling

within the interference region defined by the hypothesis (ý2,p''); the

awkward integrals of expression (8.25) are avoided. Due to the

incorrect assumption (8.29) that the state vector is perfectly known

under (•2,J), this modifying factor may be overselective, so

occassionally an undue weighting is given to the wrong component. To

compensate for this, in the evaluation of mI a heuristic adjustment

has been made to the boundaries of the interference region as defined

by ( Each azimuth boundary has been increased by one standard

deviation of the true measurement bearing error a, . and each range

boundary has been increased by a (see Fig 8.3). This has the effectr

of 'softening' the selectivity of the modifying factor (0 + p I/)mI

in (8.31). Further details of the filter implementat'-n are

described in the following section.

8.3.3 Implementation of the filter

The implementation of the tracking filter derived in the previous

sections is based on equations (8.26), (8.27) and (8.31). The

formation and control of hypotheses is shown schematically in Fig 8.4.

Each hypothesis -' from the previous time step is predicted forwards

and the usual acceptance test is applied to identify a set of probable

true measurements for each _4' . Together with the possibility that

the true measurement has been missed, these sets make up the 2

hypotheses. For each (Q,JW) hypothesis, the posterior pdf of x is

evaluated from equation (8.26) (from our approximation this is

independent of y ). Each (Q,-*) hypothesis is then split to allow



232

for the possibilities of interference absent or present (y = 0 or 1),

and the posterior probability of each ( hypothesis is calculated

from equation (8.31).

The mixture components and probability weights of the posterior

pdf of x for the current time step are now available (see equation

(8.27)). The required estimate may now be extracted, the usual

minimum mean square estimate being given by:

1t- if M, = 1

All All y=1 i, if m, =

....... (8.32)

where R. and x. are the means of the mixture components (see
3-it -1

equation (8.26)), subscript i corresponds to A , and t is the

choice of true measurement defined by 2 . Also the probability that

interference is present, based on the filter's processing of the

received measurements, is given by:

P1  Pr ýy = 1,~2,k"IZ~ (8.33)

All All

For implementation using the Clustering Algorithm, before mixture

reduction the hypotheses are divided into two groups for y = 0 and

y = I . The Clustering Algorithm is then applied separately to the

mixture distribution corresponding to each group. This ensures that

even after reduction, each mixture component is associated with
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y = 0 or 1 = 1 The reduced mixture can the.- be predicted forwards

in the usual way, ready for the next set of measurements.

An implementation using a PDAF type of approximation is shown

schematically in F:½ 8.5. This is slightly different from the usual

PDAF philosophy in that two mixture components are allowed to survive

at each time step. These two components correspoiid to interference

present or interference absent. When a set of measurements is received,

each of these components is split according to y = 1,0 , and the PDAF

is applied to each branch. Thus four branches are created with

probability weights ý00, B01, 10 and 611 (see Fig 8.5). The two

y = 0 branches and the two y = 1 branches are then merged separately

to form a two component mixture distribution with probability weights:

1 01 + 611

and

0= %OO + •I0

These components are predicted forwards to the next time step.

Note that the standard PDAF avoids the calculation of the mean

of each mixture component before reduction. However for this problem,

as for the Auxiliary Sensor filter (section 7.4.2), to evaluate the

required probability weights, the means must be available. They are

required to identify the interference region so that mI can be found

(see (8.31)). Thus much of the efficiency of the standard

PDAF is lost in this implemenation.
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8.3.4 Simulation example

Target trajectories and measurements have been simulated for the

problem defined in section 8.3.1. The standard sector scan parame'ers

shown in Table 6.1 have been used with the following interference

parameters:

rI = 5 km

Interference
region

eI = 0.04 radians

P1 1  = 0.9, PIO = 0.1

Switching
probabilities

P0 0  = 0.9, P0 1  = 0.1

One hundred replications of trajectories and measurements have been

generated for each of the following values of interfering measurement

density 0 10, 20, 40, 100, 200 and 400 km rad (Note that the

density of the usual false measurements is p = 10 km rad-.) The

standard sector scan filter, which assumes there is no interference,

and the Interference filter described in the previous section have both

been applied to the simulated data. In each case results have been

obtained for both PDAF and Clustering Algorithm reduction techniques.

The percentage of maintained tracks for each of these filters is shown

in Fig 8.6 as a function of P I

The introduction of intermittent interference with pI = 10 km 1

-1rad has negligible effect on the performance of the standard CAF
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and PDAF. Also the performance of the Interference CAF is very similar

to that of the standard CAF, and likewise the performance of both PDAFs

is similar. (For this low level of 1, with interference switched on,

thie average number of interfering measurements generated per scan is

only four.) With increasing p1 , the percentage of maintained tracks

for the standard filters tends to decrease, as would be expected.

However the performance of the Interference PDAF improves with P1

and tends towards the performance of the Interference CAF. This

improvement is because the Interference PDAF is making use oi inform-

ation from the interfering measurements. As pI increases, more

measurements fill out the interference region, so that the boundaries

of the region become more well defined (see Fig 8.2). Thus the

probability weight for the correct Q hypothesis is more strongly

reinforced as pl increases. The percentage of tracks held by the

Interference CAF remains roughly constant at about 95% as P1

increases; by modelling the intermittent interference, the performance

degradation of the standard CAF is avoided.

As expected, the average number of mixture components generated

increases with pl for both standard and Interference filters (see

Fig 8.6). For p I 40 km rad , the standard filters generate less
-1ra-1,

components than the Interference filters, while for p I 100 km rad

the standard filters generate more components. This may be explained

as follows. When PI is small, the standard filters are only likely

to encounter a few interfering measurements, especially if track is

maintained. If the Interference filters encounter a similar measurement

density, they will generate more components since allowance is made for

the possibilities y = 0 and y = 1 When p1  is large, even if the

standard filters maintain track, they are likely to have been attracted



236

into an interference region (and so encountered a high density of

measurements) during their traversal of the sector. However the

Interference filters recognize that interference may be present, and

make use of their knowledge of the distribution of these measurements

relative to the target position, to lead the track beside the inter-

ference region. Thus these filters avoid regions of high measurement

density and so for large pI ' on average they generate less components

than the standard filters, even though the possibilities y = 0

and y = 1 are included.

The variation with pI in the number of components generated by

the CAF is reflected in the average cpu time to perform a single

iteration (see Table 8.1). However the processing time for the standard

PDAF is always less than the Interference PDAF, which requires explicit

calculation of the mean of each mixture component (see section 8.3.3).

The error statistic E is also given in Table 8.1. This shows that

even for held tracks, both the standard and the Interference filters

tend to underestimate their tracking error, particularly for large

values of pI . This is probably due to the rather sweeping

approximations made in the deviation of the Interference filters and

the omission of any interference model for the standard filters. The

error underestimate is worst for the standard PDAF. As for the

standard sector scan problem, for lost tracks the filters often

seriously underestimate the tracking error.

Fig 8.7 shows the filter's achieved mean square position error

over the first forty time steps for P1 = 40 and 400 km rad . For

maintained tracks, the accuracy of the Interference filters is superior

to the standard filters. The improvement is most evident for

01 = 400 km rad-. For the standard filter, tracking error for the



2-37

held tracks increases with PI , while for the Interference filters the

CAF is little changed and the PDAF shows some improvement.

Finally, Figs 8.8 to 8.10 show three examples of target tracking

for pI = 10, 40 and 400 kmm rad Each of these figures shows

trajectory estimates produced by the CAF and the PDAF for both the

standard filter and the Int.-fercnce filter. The points at which

interference switches on and off are indicated on the actual target

paths. Also for each example a plot of interference switching against

time is presented. This may be compared with the Interference filters'

internal assessment of the probability PI that interference is

present (obtained by summing over the appropriate mixture weights -

see equation (8.33)). For p1 = 400 km 1 rad , the plots of PI are

essentially identical to the actual switching waveform, showing that

the filters are very certain as to the presence or absence of inter-

ference. With this high density it is easy for the filters to detect

the large number of extra measurements behind the target when inter-

ference is present. (A sample plot of the measurements received on a

single scan for p1 = 400 km- rad- is shown in Fig 8.11.) As p1

is reduced the presence or absence of interference becomes more

difficult to detect, and for the sparse interference P, = 10 km rad

the traces of PI are quite different from the actual switching

signal (see Fig 8.8). At the higher densities of p1 = 40 and

400 km rad , the effect on the standard filter tracks of interference

appearing behind the target is obvious, and the value of modelling the

interference is clearly demonstrated.

8.4 Conclusions

It is fairly straightforward to derive the formal Bayesian

solution to the extension of the baseline problem to multiple
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measurement classes. However the interference example shows that very

complex filters may result when this general solution is applied to

specific problems. By making several approximations a practical

filter has been derived for the interference problem. In spite of

these approximations, simulations show the performance benefit of

modelling the intermittent interference. Especially for high levels

of interference, the performance of the multiple measurement class

filter is clearly superior to the standard filter which takes no

account of possible interference.
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Fig 8.2 Given a set of class 2 measurements, the target must lie inside the
shaded rectangle
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Fig 8.7 Mean square target position error for the intermittent interference problem
for c 40 and 400 km- rad-1
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9 CONCLUSIONS AND FURTHER WORK

In this thesis we have shown how Bayesian techniques may be

applied to tracking problems where the origin of the measurement is

uncertain. A mixture reduction technique has been developed to con-

tain the ever growing computational requirements of the optimal

Bayesian filter. The performance of this Clustering Algorithm has

been assessed by simulation for a straightforward baseline tracking

problem, and it has been compared with the PDAF method. Filters have

also been developed for extensions of the baseline case including data

fusion and measurement interference problems.

SThe detailed conclusions and discussions for this study are given

at the end of each chapter. Some overall observations are given below:

(i) The performance of the CAF is always better than or

similar to that of the PDAF. This improvement is at the expense of

of increased computational memory and processing requirements.

The processing time for the CAF is usually within an order of

magnitude of the PDAF processing time, although for very difficult

cases, where performance is in any case poor, the excess may be

several orders of magnitude.

(ii) Bayes theorem provides a convenient recursive mechanism

for incorporating information from various sources, and for many

interesting tracking problems a filter based on the optimal

solution may be derived. However, even for minor extensions of

the baseline problem, the optimal filter may be very complex so

that a number of significant approximations must be imposed to

obtain a practical filter.
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(iii) Simulation has proved to be a useful tool, both for

performance assessment and as an aid to understanding the

operation of the filters.

This study has been concerned with estimating the current state

of a single target based on past measurements. We propose to extend

this work to include trajectory estimation and multiple target tracking.

For some applications it is necessary to estimate the past

trajectory of a target as well as its current position. Each new

measurement that is received provides information on the past values of

the state vector via the target model, and clearly this information

should be used for trajectory estimation. A filter which refines past

estimates in the light of subsequent measurements is called a smoothing

filter. In terms of the pdf of target state, for a smoothing filter

we require:

P(x-IZ1, *. Zn)

where k < n . For standard filtering problems without measurement

uncertainty, efficient optimal smoothing algorithms have been derived

(see Jazwinski 27). For trajectory estimation, it has been shown that

these filters can provide an impressive improvement over the standard

Kalman filter (see Refs 53 and 54). The smoothing problem for uncertain

measurement association is more complex. Mahalanabis and Zhou55 have

suggested smoothing back one or two time steps to improve a PDAF

estimate. Also we have obtained some encouraging preliminary results

for full trajectory estimation using a PDAF based smoothing algorithm.

We hope to extend this study to investigate the merrits of retaining

more than one component for the smoothing operation.
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The problem of tracking multiple targets is more complicated than

the single target case. This is due to the range of extra measurement

association hypotheses that must be taken into account. The coarse

acceptance test is most valuable here in eliminating improbable

associations between measurements and remote tracks. Blackman 1

presents a branching algorithm for generating the appropriate hypotheses

23 26
which is based on techniques developed by Reid and Mori et aZ . As

for the single target case, the number of feasible hypotheses grows

rapidly, and we intend to investigate the application of the Clustering

Algorithm to control this growth. Also we propose to study the multiple

target data fusion problem.
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Appendix A

THE KALMAN FILTER RELATIONS

A.1 The Kalman filter problem

The Kalman filter problem is similar to the problem statement of

section 2.2 of the main text, except that only a single true measure-

ment is available at each time step. A simple form of the Kalman

filter problem is stated below.

The state vector x is assumed to obey a linear system model:

-k+1 = '-xk + FWk (A-i)

where xk is the n-dimensional state vector at time tk

'P is the n x n state transition matrix,

r is the n x r distribution matrix,

and wk is the r-dimensional system driving noise which has a

Gaussian distribution with zero mean and covariance given by:

E~w T] =

Here Q is a positive definite r x r matrix and 6 k is the

Kronecker delta. At each time step tk , a u-dimensional measurement

vector zk is available, which is linearly related to the state vector:

k Hk vk , (A-2)

where H is the u x n measurement matrix

and vk is the u-dimensional measurement noise which has a Gaussian

distribution with zero mean and covariance given by:
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E[v vj R6 k

Here R is a positive definite u x u matrix and 6 k is the

Kronecker delta. Also it is assumed that initially at time ti , the

state vector x is known to have a Gaussian distribution with mean

LI and covariance M, . In a more general formulation, the covariance

matrices and system matrices may depend on k . However the resulting

filter is similar and so for simplicity of notation, this dependence

is not included.

Using this information, the problem is to determine the pdf of

the state vector at each time step tk conditional on all the measure-

ments received up to and including tk From this pdf an optimal

estimate according to any desired criterion may be obtained.

Since all relationships are linear and all distributions

Gaussian, the required pdf of the state vector at each time step is

also Gaussian (as is shown in what follows). This is why a particularly

neat and elegant recursive solution may be obtained. The Kalman filter

recursion at each time step is essentially a two stage process. In

the first stage, the prior pdf at tk is updated with the measurement

Zk to obtain the required posterior pdf. In the second stage, this

posterior pdf is predicted forwards to obtain the prior pdf for the

following time step tk+1 ' The recursions for these two stages will

be obtained using Bayesian techniques in-the following two sections.

(Different methods and optimization criteria which also lead to the

Kalman filter relations are detailed in Refs 27 to 31.)
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A.2 Update of the prior pdf

Suppose that the prior pdf at time tk (conditioned on all

measurements up to and including Zk-_ ) is given by:

P(-zk1) = " y(k k 'M)

where the mean _xk and covariance Mk are known and Z=

This is true for k = I and by induction, it will be established for

all k .

The required posterior pdf may be obtained directly from Bayes

theorem:

P~k z k) = P(Eklx- , Zkl1) P~ zklk-) (A-4)
P(EklZki1)

where p(ZkjZk_1) = /p(z k _k, ZkI) p(xk ZkI) dxk is the normalizing

constant. Now:

P(Ej'-k-' -z_1) - P(Ek•'-)

since giver. xk , ZkI contributes no extra information and from

equation (A-2):

P(Hke) = nue a o ; e u ik ( R)

Hence the numerator of equation (A-4) is given by:
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= [27r)n+m IRI I "k exp- '(Ek - ~k )T R-1(zk - ~k)

- x - k)T~1~

1(2¶t)n+MIRy Mk~J exp- '(x- - :-PQT P l~- - ýk) + r' (A-5)

on combining the quadratic forms (see section A.4), where

Fk 1 •1 + HrR-1g (A-6)

xk = xk + kH 1(k - Hxck)(-7

and

ri K H + R)-1 (Kk - H%)

which is independent of xk

The denominator of equation (A-4) is the integral of equation (A-5)

with respect to xk :

P(KkýZk-l) L27T)m+n IRIIMk er [21T)nPkJ (A-8)

Dividing equation (A-5) by equation (A-8) gives:

pk(_•zk) = F(_ (A-9)

So the posterior pdf of x is Gaussian with mean and covariance

Pk " The expression for Pk may be written in a more convenient form

using the matrix inversion theorem (see Ref 27 page 262) to obtain,
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with equation (A-7), the update recursions in the forms that are

usually quoted for the Kalman filter:

S-k + Kk -k (A- )

where v-k = Zk - Hxk is known as the innovation,

and Kk = Pk HT R-1 is the Kalman gain. The covariance Pk' which

is required for the evaluation of the gain matrix is given by:

(from equation (A-6))

Pk M -Mk H -k H Mk (A-11)

where Sk = H Mk HT + R.

We can now verify that Sk is the prior covariance of zk

The prior pdf of zk is given by equation (A-8), from which:

p(zk Zk_1) = [(2)miR Mk ]- exp- (Zk - Hx-k)T Sk 1 (Zk - k

Also

RIJRMk Pk = IRL Mk M1 + Hr R-1 H

= IH Mk HM+ RI = Sk ,

using standard identities for determinants (see, for example Sorenson 36).

Hence:

P(ýkj~k-l) -4 Y(ýk ; 1ýk ' k) (A-12)

Note also, that since v-k = Zk - H-k 9 the prior distribution of the

innovation is Gaussian with zero mean and covariance Sk
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A.3 Prediction

To complete the recursion, it is necessary to predict forwards from the

posterior pdf at tk to obtain the prior pdf at time tk+1 ,ie

P(_Xk 1 IZk)

Now, by definition,

P(Xk~+1IZk) = fP (-Xk÷ ,k 'IZk)dk

fP (_Xk+1 1 Xk, Zk)p (Xk1Zk)dlxk (A-13)

P(xk+1lXkZk) = p(xk+llx.k) , since given xk , Zk contributes no useful infor-

mation, and from (A-I)

P(xk+1 ýxk) = jr(xk+lpxk, FQFT) (A-14)

Hence, from (A-9) and (A-14)

P(_xk+lxkIZk) = 2,T)2nIrQrTI PkT- exp{- 1( k+ - x )T(rQrT)-I(X -Dx

^ T -1
(-xk--xk) Pk ( -X -- k)

2•)2n'lQrTI1IPkI] exp- (_xk- _d)TD-(xk -d)

-)T Mk+ 1,x D
- (xk+1 + _k)T1(

........ (A-15)

on rearranging the quadratic forms (using the result of section A.4),

where d is independent of xk

D-1 t T (Q T)-I ý + P-I

Tn Tand k+ FQF

--- -•m N m •, m anm•amlln,-'PkmI H "mi I
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The expression (A-15) m:.y be integrated with respect to x to give

fP (_Xk+ l ,Xk [Zk ) dxk

IDI, [ 2 ,)ni rQr T1P] exp{ T-xk+ -1k)}= xp - (Xk+I - tx~k) Mk+1 1k~ -ý-

Also

IDI (LrQETIP k D-½ = (ID-I' jrQrT[P k[-1

= (IpkuI rQrT + DPkrDiiPkI)-i

= j

using standard identities for determinants (see Ref 36).

Therefore,

p(_xk+11Zk) = "'(_xk+ I_-k+1 IMk+) ,IA-6

where k+=

T T
and Mk+I = DPk T + kQT

These expressions for the mean xk+1 and covariance Mk+, complete the Kalman

filter recursions.

A.4 Combination of quadratic forms

Lemma If B and C are symmetric and positive definite, then

(a - Ax) TB-II (a AAx) + (b - T -I b ( T D-I(x + r' ,I(A-17)

where b + DATB-I(a - Ab)

-I ATB-IA + C-

and r' = (a - Ab) T(B + ACA T) I(a - Ab)

Note that r' does not depend on x
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Proof Consider the left-hand side of (A-17):

(a - Ax)TB I(a - Ax) + (b - x)T C (b - x) x T(AT B A + C- )x

x T(ATB- a + C-I b) (aTB-IA +bTc-I )x
aTB-1 T1

+aTBIa + bTC-

xT D- I x

- xT(ATB I(a-Ab) +D- b)

- ((a-Ab)TB-1A + bTD-I)x
+ TB-I bTc-

+ a + b

xTD- I _- x T D- I v - yTD-Ix

+ aTB- a + bTc-Ib

-(x - TD I(x - y) + r'

where r' _yTD- I . . .aTB-la + bTCI b

-(a - Ab)TB IADATB-I(a -Ab) - T aB IAb + bTATB-IAb

-bTATB-Ia + bTATB IAb- bT(ATB-IA + C_ )b+ a + bTC_-b

= (a - Ab)T[B-I - B IA(ATB I A + C-I) IATB-I] (a - Ab)

and from the matrix inversion lemma (see Ref 27, p 262), the term in square

brackets is equal to

(B + ACA )-1

which completes the proof.
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MEAN AND COVARIANCE OF A MIXTURE DISTRIBUTION

AND THE PDAF ALGORITHM

Consider any mixture distribution with pdf

N

p(x) = .i pi(x)

i=1

where pi(x) is a component pdf

and B. is a probability associated with the ith component

such that:

B. > 0

and

Also let the mean of the ith component be R. and let the covariance

of the ith component be P.1

The mean of the mixture is defined by:

_ = _p(x)dx

N N

E BifxPi(x)dx =E B ' - (B-1)

T=1 i=1

The covariance of the mixture is defined by:
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P = f(x )(x - )T p(x) dx

L T p(x) dx - T

N

Z i J T Pi(X) dx -

But

Pi -px) dx- R. x.

so

N

P BiP R ) : (B-2)
1=1

Another form for this covariance may be obtained by observing that:

N
8. R. RT T T .T R. R T + T

i=1

N

i= 1

N N

Therefore P = i B P + i(i- - )T . (B-3)
i=1 i=1

B.2 For the PDAF, the posterior mixture distribution is approximated

by a single Gaussian at every time step. The Gaussian approximation

is chosen to have the same mean and covariance as the mixture. The

PDAF is an efficient algorithm because for this approximation, explicit

calculation of the mean and covariance of each individual mixture

component may be avoided.
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Due to the single Gaussian approximation, the prior pdf at any

time step is approximated by:

p (xL ) = /4"(x ; x , M)

After update by a set Z of m measurements, the posterior pdf is:

m

P(XIZ) RZ P") (B-4)

x + Kv z if z 0

where R, =

x if Z 0

_ = z- H._-

and

PI if z#0

M if k 0

where P' and K are obtained from the usual Kalman filter update

relations. equation (2.8). For the PDAF approximation we only require

the mean R and covariance P of equation (B-4). From equation (B-I),

the mean is given by:

m

Z= zz = x+K_ , (B-5)
Z=0

m

where v = Z v

Z= 1

Therefore we have:
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K~tif 0SuKs if i0

Substituting this into equation (B-3) gives the required covariance

P of (B-4) :

m

P = B0 M+ Z BXP

£=I1

m

+ K[vT + m + T) - v TKT
£=I1

= BM+ (i - P + K Z T - T]K T (B-6)

Note that the computational effort necessary to evaluate equations (B-5)

and (B-6) is modest in comparison with the full Bayesian filter (see

Ref 11).
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THE JOINING ALGORITHM WITH MEASURE d..
ii

IS NOT SUBJECT TO REVERSALS

Suppose that at some stage during mixture reduction, the closest

components according to the distance measure given by (3.8) of

section 3.6.1 have means x and y and weights ax and By . The

distance between these components is dmin where:

2 2dm. = f(Bx , 8)i1x -YT1mln y,---

where ilx-xL12  = -y)T P-1(x- )

and f(8 ,B ) = B /(S( + 8 )x y xy x y

As they are closest, these two components are merged to produce

a new component with mean:

8 x+8 x
w = L

8+8
x y

and weight 8 = 8 +w x y

Now consider any other component with mean z and weight E

The distance between this component and either of the two which have

been merged must be greater than or equal to d min , so:

dmm dxz = f(ax , zJix - K_1 2 (C-i)

and
d 2 yz = f , lY - z2 (C-2)

min yzy

To confirm that the minimum distance increases monotonically as

reduction proceeds (-i it is not subject to reversals), we must prove

that:
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d2 > 2 d2
zw min

Now:

d 2 = f(s w Bj lI z W1 wl 2

8)- - 2

= f (w, Pa)11 X+ 2
8

f(% B (_ -z(12÷ I•_- _w

w+)l~ )x(11 !X 1

f(ww9 Bz ) BIlz X-12 2 82 21

S•y,~~~x +-_ ÷ llz_ x l x~z x -_

S inc e

f (Sw ' , z S, w B

Bw 6w W( 6w + a z 6 w + az

and using the definition of the distance measure:

d 2 + 5z d 2+ (Bx + ýzd2_ d2w w z
• ,. .. ,.,---..-,• mmmmm Nmmummm-•m,,,L'Hz -mlmmam2 -m .,,- n2 -
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Hence from (C-I) and (C-2):

d > + + + + (•x = d2 d

+ y z +x)min rmin
w z

This completes the proof.
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COMPUTATIONAL REQUIREMENTS OF THE REDUCTION ALGORITHMS

D.1 The Joining Algorithm (Fig 3.1)

As explained in section 3.6.1 the operation of the Joining

2
Algorithm is centred around a symmetric distance matrix (d..) with

d.. = 0. Thus it is necessary to store the upper triangular part ofii N2-N

the matrix which occupies 2 storage locations, where N is the

original number of components in the mixture.

The most time-consuming operations are the evaluation and com-

parison of the distance measures. The calculation of each distance

involves the evaluation of a quadratic form which requires of the order

2 2
of n multiplications and n additions, where n is the dimension

of the state space. Note however that the matrix P in the distance

formula equation (3.8) is constant, since the merging of components

preserves the overall mixture covariance. Thus only one matrix

inversion suffices for all distance evaluations.

To reduce a mixture from N to M components, the number of

distance calculations required is

2 
(N-M+1

DJ 2 E
i=2

= N(N - 2) - 7 (M- 3) (D-1)

The identification of

min d..
i,j ij

where i < j , requires
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- 1) - 1

comparisons at each iteration, where m is the number of remaining

components. Thus the total number of comparisons required during the

reduction of a mixture from N to M components is

N

m=M

1 (N - M + 1) N2 + N(M - 1) + (M - 1)2 - 7ý (D-2)

There are N - M 1 1 terms in the summation because one extra evaluation

of min d. is required for the algorithm stopping criterion. Note that
ij 3

the required number of comparisons is of order N and the number of

2
distance calculations is of order N . The number of these operations

is shown in Fig D.1 as a function of M , for the cases N = 100 and

N = 15. The value of N clearly dominates the number of operations,

and although this decreases with M , the decrease is small while

N
M < . Note that the number of comparisons required to find the com-

ponents with the lowest 6 weights (see Fig 3.1) has not been included

in the above total as their number is relatively insignificant.

D.2 The Clustering Algorithm (Fig 3.12)

Unlike the Joining Algorithm whose computational cost can be pre-

dicted quite accurately, the cost of the Clustering Algorithm is very

dependent on how quickly the mixture components are clustered and on

how many iterations are required to adequately reduce the mixture. The

most time-consuming operations for the algorithm are distance evaluations

and comparisons; the merging of selected components into a single Gaussian

is relatively inexpensive.
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In the formation of a single cluster, the distance from the

cluster centre to every unclustered component must be evaluated. The

total number of distance calculations required for an iteration of the

algorithm is

M'-I

ND' = M'(N' - 1) - (M' - i)m. (D-3)
DC

i=I

where N' i3 the number of components at the start of the iteration,

M' is the total number of clusters formed during the iteration and m.1

is the number of components combined into the ith cluster. For given
I I I

N' and M' , bounds on NDC may be obtained by considering the most and

least favourable values for m. . The lower bound is obtained when1

N' - (M' - 1) components are combined into the first cluster so that all

further clusters only contain one element, ie

IN' - (M' - 1) if i = 1

m. =

I otherwise (D-4)

Thus the lower bound on N'C is given by, from equation (D-3),

DC 2

The upper buuLkd is ctaned if the first M' - 1 clusters only contain

one component, so

m. = 1 for i • M' - 1

and

I • mM, • N' - (M' - 1) (D-6)

Thus the upper bound on N' is given by, from equation (D-3),
DC

D ( (M'+U1 (D-7)DC= -'N - M+ j(D7
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Also, since the distance measure for each cluster is normalized by the

covariance of the cluster centre (see equation (3.9)), M' matrix

inversions are required. In Fig D.2, U' and L' are shown as a
;C DC

function of M' for N' = 100 and N' = 15.

To select the components for clustering, each of the N'
DC

distances must be compared with the clustering theshold. Also com-

parisons are required to identify those components which are closest

together so that they can be merged if no components are clustered.

However if components are clustered the minimum distance is no longer

required, and so the search for the closest components is abandoned at

this stage. Thus the minimum number L'L of comparisons required for

an iteration occurs when m. is given by equation (D-4) and when the1

first component to be examined is clustered, so

Ltc = LC . (D-8)

The maximum number U' of comparisons required for an iteration occurs
Ccc

when every cluster contains only one component (no components are

clustered), ie

m. = 1 for all i

In this case

S= UýC +(UDC - 1) (D-9)

Clearly for mixtures with a large number of components, such aS

N' = 100, the first iteration of the Clustering Algorithm could involve

a very large number of distance evaluations and comparisons (see Fig D.2).

However, in practice it has been found that the number of operations is

usually well below the upper bounds U' and U'C , and that mixtures
DC CC
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with a large number of components are usually significantly reduced

after the first iteration (ie M' << N'). Thus if further iterations are

necessary, the number of components involved is usually fairly modest.

The Clustering Algorithm would be most expensive in the unlikely

circumstance of no component ever being clustered. In this case the

closest two components would be combined at each iteration, so the

mixture would only be reduced by one component per iteration. This

provides an upper bound on the total number of operations. For this

worst case we also assume that BT = 0, so that every one of the N'

components at the start of an iteration is considered as a possible

cluster centre. Thus the number of distance evaluatiors and comparisons

for each iteration is given by U and U' with M' = '. Also 'LCCcc

matrix inversions are required for each iteration. Thus an upper bound

on the total number of matrix inversions required to reduce a mixture

from N to M components is given by

N

) N' (N - M)(N + M + 1) (D-10)
E= 2

N '=M+ 1

The total number of distance calculations is bounded by

N
U DC 2 N'(N' - 1) = -(N- M)(N 2 + NM+ 2 - I)

N '=M+l

....... (D-11)

and the total number of comparisons is bounded by

U = 2U - (N - M) (D-12)

m, unnunmllllllninnII~ mi~lCC DCnM
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These upper bounds on the number of operations are shown in Fig D.3 as

a function of M , for N = 100 and N = 15. In the best possible case all

components that are clustered are combined into the first cluster on the

first iteration. Thus M is a lower bound on the total number of matrix

inversions and equation (D-5), with N' = N and M' = M, gives a lower

bound on the total number of distance calculations and comparisons.

D.3 Comparison of operation counts for the two algorithms

If the original number N of components in the mixture is large

compared with the number M of components after reduction, the number

of operations required by the Joining Algorithm lies between the upper

and lower bounds of the number of operations for the Clustering Algorithm.

This is shown in Table D.I. For the simulation example repcrted in

Chapter 4, the Clustering Algorithm was consistently more efficient than

the Joining Algorithm. Also it should be noted that for the Joining

Algorithm a large distance matrix must be stored. For the Clustering

Algorithm, storage requirements over those necessary to hold the mixture

components are negligible.

Table D.1

Operation counts for the Joining Algorithm and the
Clustering Algorithm when N is large

compared with M

Joining Upper bound Lower bound
Operation Joinin for Clustering for Clustering

Algorithm Algorithm Algorithm

9 =3(N

Distance calculations N = O(N-) UDC = O(N ) L DC= (N)

Comparisons NCj = O(N 3) U c 2Ncj L c O(N)

Matrix inversons O(N2, M
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Appendix E

RECURSIVE SOLUTION OF MULTIPLE SENSOR FILTER OF SECTION 7.3

Since only one measurement from each of the N sensors may be
S

true, a measurement association hypothesis on the data at a particular

time step may be denoted

Z = i 2j2 ' uju ' Ns JN)
s

th
-where •u indicates that the j measurement from sensor u is

Uu

true if j= 0 and indicates that all measurements from sensor
t Juo

u are false. Sinc•e each. sensar is independent, info-rmation- from each

sensor may be incorporated sequentially using the update relations of

Chapter 2. Suppose that data from the first u-1 of the N sensors
5

have been incorporated and let uI i denote a hypothesis on the

measurements from the u-1 sensors and from all previous time steps

(the subscript k and the conditioning on 9 have been omitted). The

subscript i , which enumerates all these hypotheses, runs from I to

,

n To incorporate measurements from sensor u , the set of feasible

hypotheses must be widened to include

u = u-1 i ' uj)

for

, ... , n and j 0 , ... , M u

and

(i - 1)(m + 1) + j + I
U

...................................................................(E-I)
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Thus the posterior pdf of x after the inclusion of measurements from

sensor u is given by

m n*u u-i (9 P)r 5K zf
p(xZu) = Z(Suj uj u -1

j =0 i=1

where Z = , , Zu.

As in section 2.3 2, it can be shown that

p u-1 i ' Zu ) ; Xuj

K- if
x* : •* {u*i (-•uj -"oU•

where -uij -ui +

0 if j 0

* * HT -1
K. = P ..H R- for j 0
ul u2j u U U

* T *-1
M. - M Hui u ui H M. if + 0

Pui
ul]u=

M i if 1=0

and

* M* TS . = H M. H 4R
Ui U Ul U U

,E-2)

In the above relations x . and M .i are th,, muean and covariance

of the Gaussian distribution of x under hypothesis u-1 i and so

are available from the processing of data from sensor u-1 . Note that

with a minor change of notation, equation (E-2) is identical to

equations (2.8) and (2.9). Likewise, by analogy with section 2.3.2,
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VuKI iJE *u ;Hui ,Sui for j #0

E

Pr~i. ~ iZr uj ' [u- i zu =

eu-1 i (1 Du) p for j =0

EPDu

...... (E-3)

where eu-i Pr -AI*1 ilZ ' which is available from

processing of sensor u-i , and E is the normalizing denominator.

Again with a minor change of notation equation (E-3) is identical to

equation (2.18), and so measurements from extra sensors can be processed

using the same computer code as for the single sensor case.

After updating from sensor u is complete, quantities may be

re-labelled ready for processing sensor u+1

* ^

-u+1 t -uij

M u+1 Z = Puij

u• Y' Pr Cuj ' Iru-I 1i u'

* * (mu )
nu = num + I)

U

and z and Ku are given by equation (E-1). When data from all the

N sensors have been processed, the pdf of x is projected forwards to

the next time step as described in section 2.3.3. This the solution is

complete.
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